These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28666630)

  • 21. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.
    Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y
    J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash.
    Gökelma M; Vallejo-Olivares A; Tranell G
    Waste Manag; 2021 Jul; 130():65-73. PubMed ID: 34051605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment.
    Yang S; Saffarzadeh A; Shimaoka T; Kawano T
    J Hazard Mater; 2014 Feb; 267():214-20. PubMed ID: 24462890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.
    Biganzoli L; Ilyas A; Praagh Mv; Persson KM; Grosso M
    Waste Manag; 2013 May; 33(5):1174-81. PubMed ID: 23453355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the effects of municipal solid waste incinerator bottom ash on the decomposition of biodegradable waste using a completely mixed anaerobic reactor.
    Banks CJ; Lo HM
    Waste Manag Res; 2003 Jun; 21(3):225-34. PubMed ID: 12870642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental study on the influence of curing conditions on the mechanical performance of municipal solid waste incinerated-bottom ash (MSWI-BA).
    Zhao Y; Xu F
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):89101-89113. PubMed ID: 37452240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases.
    Wei Y; Shimaoka T; Saffarzadeh A; Takahashi F
    J Hazard Mater; 2011 Mar; 187(1-3):534-43. PubMed ID: 21316147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.
    Sorlini S; Collivignarelli MC; Abbà A
    Waste Manag Res; 2017 Sep; 35(9):978-990. PubMed ID: 28732454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.
    Wei N
    Int J Environ Res Public Health; 2015 May; 12(5):4992-5005. PubMed ID: 25961800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.
    Di Gianfilippo M; Costa G; Verginelli I; Gavasci R; Lombardi F
    Waste Manag; 2016 Oct; 56():216-28. PubMed ID: 27478024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material.
    Etoh J; Kawagoe T; Shimaoka T; Watanabe K
    Waste Manag; 2009 Mar; 29(3):1048-57. PubMed ID: 18845427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.
    Mostbauer P; Lombardi L; Olivieri T; Lenz S
    Waste Manag; 2014 Jan; 34(1):125-33. PubMed ID: 24120459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Municipal solid waste incineration (MSWI) fly ash washing pretreatment by biochemical effluent of landfill leachate: a potential substitute for water.
    Xu Y; Fu Y; Xia W; Zhang D; An D; Qian G
    Environ Technol; 2018 Aug; 39(15):1949-1954. PubMed ID: 28639498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization.
    Sicong T; Jianguo J; Chang Z
    J Hazard Mater; 2011 Sep; 192(3):1609-15. PubMed ID: 21782326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.
    Tang J; Steenari BM
    Waste Manag; 2016 Feb; 48():315-322. PubMed ID: 26463013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Leaching Toxicity and Bioaccessibility of Heavy Metals in MSWI Fly Ash with Various Particle Sizes].
    Wang CF; Chen GF; Zhu YC; Yao D; Huang XC; Wang LJ
    Huan Jing Ke Xue; 2016 Dec; 37(12):4891-4898. PubMed ID: 29965333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Content and fractionation of Cu, Zn and Cd in size fractionated municipal solid waste incineration bottom ash.
    Yao J; Kong Q; Zhu H; Long Y; Shen D
    Ecotoxicol Environ Saf; 2013 Aug; 94():131-7. PubMed ID: 23731863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.
    Lassesson H; Fedje KK; Steenari BM
    Waste Manag Res; 2014 Aug; 32(8):755-62. PubMed ID: 25106538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.