BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28666632)

  • 1. Single-chamber microbial fuel cells as on-line shock-sensors for volatile fatty acids in anaerobic digesters.
    Schievano A; Colombo A; Cossettini A; Goglio A; D'Ardes V; Trasatti S; Cristiani P
    Waste Manag; 2018 Jan; 71():785-791. PubMed ID: 28666632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell.
    Pant D; Arslan D; Van Bogaert G; Gallego YA; De Wever H; Diels L; Vanbroekhoven K
    Environ Technol; 2013; 34(13-16):1935-45. PubMed ID: 24350447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion.
    Sun H; Zhang Y; Wu S; Dong R; Angelidaki I
    Sci Total Environ; 2019 Mar; 655():1439-1447. PubMed ID: 30577135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using an anaerobic digestion tank as the anodic chamber of an algae-assisted microbial fuel cell to improve energy production from food waste.
    Hou Q; Yang Z; Chen S; Pei H
    Water Res; 2020 Mar; 170():115305. PubMed ID: 31765826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion.
    Jin X; Angelidaki I; Zhang Y
    Environ Sci Technol; 2016 Apr; 50(8):4422-9. PubMed ID: 27054267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity generation from mixed volatile fatty acids using microbial fuel cells.
    Teng SX; Tong ZH; Li WW; Wang SG; Sheng GP; Shi XY; Liu XW; Yu HQ
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2365-72. PubMed ID: 20607228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.
    Zhang Z; Li J; Hao X; Gu Z; Xia S
    Environ Technol; 2019 Jul; 40(18):2337-2344. PubMed ID: 29441823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of arsenite on denitrification using volatile fatty acids (VFAs) as a carbon source.
    Panthi SR; Wareham DG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Aug; 43(10):1192-7. PubMed ID: 18584435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.
    Di Domenico EG; Petroni G; Mancini D; Geri A; Di Palma L; Ascenzioni F
    Biomed Res Int; 2015; 2015():351014. PubMed ID: 26273609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of microbial fuel cell with volatile fatty acids from food wastes.
    Choi JD; Chang HN; Han JI
    Biotechnol Lett; 2011 Apr; 33(4):705-14. PubMed ID: 21184134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery.
    Magdalena JA; Tomás-Pejó E; González-Fernández C
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31842312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage.
    Catal T; Cysneiros D; O'Flaherty V; Leech D
    Bioresour Technol; 2011 Jan; 102(1):404-10. PubMed ID: 20667712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial fuel cells operating on mixed fatty acids.
    Freguia S; Teh EH; Boon N; Leung KM; Keller J; Rabaey K
    Bioresour Technol; 2010 Feb; 101(4):1233-8. PubMed ID: 19854639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.
    Xiao K; Zhou Y; Guo C; Maspolim Y; Ng WJ
    J Environ Sci (China); 2016 Apr; 42():196-201. PubMed ID: 27090711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.
    Huang J; Zhou R; Chen J; Han W; Chen Y; Wen Y; Tang J
    Bioresour Technol; 2016 Jul; 211():80-6. PubMed ID: 27003793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks.
    Regueiro L; Lema JM; Carballa M
    Bioresour Technol; 2015 Dec; 197():208-16. PubMed ID: 26340029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the anaerobic process: effects of volatile fatty acids.
    Pind PF; Angelidaki I; Ahring BK
    Biotechnol Bioeng; 2003 Jun; 82(7):791-801. PubMed ID: 12701145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic loading rate: A promising microbial management tool in anaerobic digestion.
    Ferguson RMW; Coulon F; Villa R
    Water Res; 2016 Sep; 100():348-356. PubMed ID: 27214347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion.
    Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A
    J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.