BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 28667014)

  • 1. The gluconate shunt is an alternative route for directing glucose into the pentose phosphate pathway in fission yeast.
    Corkins ME; Wilson S; Cocuron JC; Alonso AP; Bird AJ
    J Biol Chem; 2017 Aug; 292(33):13823-13832. PubMed ID: 28667014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Rsv1 in the transcriptional regulation of genes involved in sugar metabolism for long-term survival.
    Kim EJ; Cho YJ; Chung WH; Roe JH
    FEBS J; 2020 Mar; 287(5):878-896. PubMed ID: 31472097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe.
    Tsai CS; Shi JL; Ye HG
    Arch Biochem Biophys; 1995 Jan; 316(1):163-8. PubMed ID: 7840612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-13 NMR studies and purification of gluconate pathway enzymes from Schizosaccharomyces pombe.
    Tsai CS; Ye HG; Shi JL
    Arch Biochem Biophys; 1995 Jan; 316(1):155-62. PubMed ID: 7840611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
    Rauch B; Pahlke J; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new adaptation strategy to glucose starvation: modulation of the gluconate shunt and pentose phosphate pathway by the transcriptional repressor Rsv1.
    Fraile R; Sánchez-Mir L; Hidalgo E
    FEBS J; 2020 Mar; 287(5):874-877. PubMed ID: 31777167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2.
    Frunzke J; Engels V; Hasenbein S; Gätgens C; Bott M
    Mol Microbiol; 2008 Jan; 67(2):305-22. PubMed ID: 18047570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [PECULIARITIES OF GLUCOSE AND GLYCEROL METABOLISM IN Nocardia vaccinii IMB B-7405].
    Pirog TP; Shevchuk TA; Beregova KA; Kudrya NV
    Ukr Biochem J; 2015; 87(2):66-75. PubMed ID: 26255340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H.
    Richhardt J; Bringer S; Bott M
    Appl Microbiol Biotechnol; 2013 May; 97(10):4315-23. PubMed ID: 23354449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase.
    Fraenkel DG
    J Bacteriol; 1968 Apr; 95(4):1267-71. PubMed ID: 4869212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and kinetic characterization of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe.
    Tsai CS; Chen Q
    Biochem Cell Biol; 1998; 76(1):107-13. PubMed ID: 9666312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gluconate metabolism in germinated spores of Bacillus megaterium QM B1551: primary roles of gluconokinase and the pentose cycle.
    Otani M; Fujita T; Umezawa C; Sano K
    Biochim Biophys Acta; 1987 Jun; 924(3):467-72. PubMed ID: 3036241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repression of enzymes of the pentose phosphate pathway by glucose in fission yeast.
    Mehta S; Velmurugan S; Lobo Z
    FEBS Lett; 1998 Dec; 440(3):430-3. PubMed ID: 9872416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores.
    Otani M; Ihara N; Umezawa C; Sano K
    J Bacteriol; 1986 Jul; 167(1):148-52. PubMed ID: 3013833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and nonphosphorylating pathways.
    Müller HM
    Zentralbl Mikrobiol; 1985; 140(6):475-84. PubMed ID: 4072456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [GLUCOSE METABOLISM IN SURFACTANTS PRODUCER NOCARDIA VACCINII IMV B-7405].
    Pirog TP; Shevchuk TA; Beregova KA
    Mikrobiol Z; 2015; 77(5):2-10. PubMed ID: 26638479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gluconate accumulation and enzyme activities with extremely nitrogen-limited surface cultures of Aspergillus niger.
    Müller HM
    Arch Microbiol; 1986 Mar; 144(2):151-7. PubMed ID: 3013115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gluconate metabolism in Escherichia coli.
    Eisenberg RC; Dobrogosz WJ
    J Bacteriol; 1967 Mar; 93(3):941-9. PubMed ID: 5337840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel pathway for alcoholic fermentation of delta-gluconolactone in the yeast Saccharomyces bulderi.
    van Dijken JP; van Tuijl A; Luttik MA; Middelhoven WJ; Pronk JT
    J Bacteriol; 2002 Feb; 184(3):672-8. PubMed ID: 11790736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.