BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28667050)

  • 1. Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles.
    Jackson WF; Boerman EM
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H667-H675. PubMed ID: 28667050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-gated Ca
    Jackson WF; Boerman EM
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H871-H878. PubMed ID: 29957015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles.
    Westcott EB; Jackson WF
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1616-30. PubMed ID: 21357503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.
    Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E
    Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles.
    Westcott EB; Goodwin EL; Segal SS; Jackson WF
    J Physiol; 2012 Apr; 590(8):1849-69. PubMed ID: 22331418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological evidence for capacitative Ca(2+) entry in cannulated and pressurized skeletal muscle arterioles.
    Potocnik SJ; Hill MA
    Br J Pharmacol; 2001 Sep; 134(2):247-56. PubMed ID: 11564642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles.
    Hong K; Zhao G; Hong Z; Sun Z; Yang Y; Clifford PS; Davis MJ; Meininger GA; Hill MA
    J Physiol; 2016 Dec; 594(23):7027-7047. PubMed ID: 27531064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of vascular smooth muscle inward-rectifier K
    Tykocki NR; Bonev AD; Longden TA; Heppner TJ; Nelson MT
    Am J Physiol Renal Physiol; 2017 May; 312(5):F836-F847. PubMed ID: 28148533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation.
    Verbeuren TJ; Vallez MO; Lavielle G; Bouskela E
    Br J Pharmacol; 1997 Nov; 122(5):859-66. PubMed ID: 9384501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-velocity relationship of myogenically active arterioles.
    Davis MJ; Davidson J
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H165-74. PubMed ID: 11748060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P-450 omega-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation.
    Lombard JH; Kunert MP; Roman RJ; Falck JR; Harder DR; Jackson WF
    Am J Physiol; 1999 Feb; 276(2):H503-8. PubMed ID: 9950851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone.
    Jackson WF
    Front Physiol; 2021; 12():770450. PubMed ID: 34819877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-induced arteriolar dilation after tyrosine kinase and nitric oxide synthase inhibition in hamster cheek pouch microcirculation.
    Bertuglia S; Colantuoni A
    J Vasc Res; 1998; 35(4):250-6. PubMed ID: 9701709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave.
    Budel S; Bartlett IS; Segal SS
    Circ Res; 2003 Jul; 93(1):61-8. PubMed ID: 12791708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion channels and the regulation of myogenic tone in peripheral arterioles.
    Jackson WF
    Curr Top Membr; 2020; 85():19-58. PubMed ID: 32402640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.
    Mauban JR; Zacharia J; Fairfax S; Wier WG
    Am J Physiol Heart Circ Physiol; 2015 Jun; 308(12):H1517-24. PubMed ID: 25888510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myogenic response gradient in an arteriolar network.
    Davis MJ
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H2168-79. PubMed ID: 8322948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries.
    VanBavel E; Sorop O; Andreasen D; Pfaffendorf M; Jensen BL
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2239-43. PubMed ID: 12388244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.
    Tykocki NR; Boerman EM; Jackson WF
    Compr Physiol; 2017 Mar; 7(2):485-581. PubMed ID: 28333380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.