These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28667266)

  • 41. ERPs in an oddball task under vection-inducing visual stimulation.
    Stróżak P; Francuz P; Augustynowicz P; Ratomska M; Fudali-Czyż A; Bałaj B
    Exp Brain Res; 2016 Dec; 234(12):3473-3482. PubMed ID: 27488367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of human extrageniculostriate pathways after damage to area V1.
    Ptito M; Johannsen P; Faubert J; Gjedde A
    Neuroimage; 1999 Jan; 9(1):97-107. PubMed ID: 9918731
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the neural sources of the pattern-reversal VEP.
    Di Russo F; Pitzalis S; Spitoni G; Aprile T; Patria F; Spinelli D; Hillyard SA
    Neuroimage; 2005 Feb; 24(3):874-86. PubMed ID: 15652322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early (N70m) neuromagnetic signal topography and striate and extrastriate generators following pattern onset quadrant stimulation.
    Tzelepi A; Ioannides AA; Poghosyan V
    Neuroimage; 2001 Apr; 13(4):702-18. PubMed ID: 11305898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human lateral geniculate nucleus and visual cortex respond to screen flicker.
    Krolak-Salmon P; Hénaff MA; Tallon-Baudry C; Yvert B; Guénot M; Vighetto A; Mauguière F; Bertrand O
    Ann Neurol; 2003 Jan; 53(1):73-80. PubMed ID: 12509850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A kiss is not a kiss: visually evoked neuromagnetic fields reveal differential sensitivities to brief presentations of kissing couples.
    Cogan GB; Kirshenbaum SR; Walker J; Poeppel D
    Neuroreport; 2015 Sep; 26(14):850-5. PubMed ID: 26287497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI.
    Ahlfors SP; Simpson GV; Dale AM; Belliveau JW; Liu AK; Korvenoja A; Virtanen J; Huotilainen M; Tootell RB; Aronen HJ; Ilmoniemi RJ
    J Neurophysiol; 1999 Nov; 82(5):2545-55. PubMed ID: 10561425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Timing of V1/V2 and V5+ activations during coherent motion of dots: an MEG study.
    Prieto EA; Barnikol UB; Soler EP; Dolan K; Hesselmann G; Mohlberg H; Amunts K; Zilles K; Niedeggen M; Tass PA
    Neuroimage; 2007 Oct; 37(4):1384-95. PubMed ID: 17689986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-term potentiation of synaptic transmission in kitten visual cortex.
    Komatsu Y; Fujii K; Maeda J; Sakaguchi H; Toyama K
    J Neurophysiol; 1988 Jan; 59(1):124-41. PubMed ID: 2830372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients.
    Laron M; Cheng H; Zhang B; Schiffman JS; Tang RA; Frishman LJ
    Mult Scler; 2010 Apr; 16(4):412-26. PubMed ID: 20207786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Common cortical network for first and second pain.
    Forss N; Raij TT; Seppä M; Hari R
    Neuroimage; 2005 Jan; 24(1):132-42. PubMed ID: 15588604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The use of a squid third order spatial gradiometer to measure magnetic fields of the brain.
    Weinberg H; Brickett PA; Vrba J; Fife AA; Burbank MB
    Ann N Y Acad Sci; 1984; 425():743-52. PubMed ID: 6331246
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visually evoked magnetic fields of the human brain.
    Brenner D; Williamson SJ; Kaufman L
    Science; 1975 Oct; 190(4213):480-2. PubMed ID: 170683
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers.
    Gialopsou A; Abel C; James TM; Coussens T; Bason MG; Puddy R; Di Lorenzo F; Rolfs K; Voigt J; Sander T; Cercignani M; Krüger P
    Sci Rep; 2021 Nov; 11(1):22412. PubMed ID: 34789806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Neural Response Latency of the Human Early Visual Cortex from MRI-Based Tissue Measurements of the Optic Radiation.
    Takemura H; Yuasa K; Amano K
    eNeuro; 2020; 7(4):. PubMed ID: 32424054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. White Matter fMRI Activation Cannot Be Treated as a Nuisance Regressor: Overcoming a Historical Blind Spot.
    Grajauskas LA; Frizzell T; Song X; D'Arcy RCN
    Front Neurosci; 2019; 13():1024. PubMed ID: 31636527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noninvasive spatiotemporal imaging of neural transmission in the subcortical visual pathway.
    Yoshida F; Hirata M; Onodera A; Goto T; Sugata H; Yorifuji S
    Sci Rep; 2017 Jun; 7(1):4424. PubMed ID: 28667266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145.
    Shigeto H; Tobimatsu S; Yamamoto T; Kobayashi T; Kato M
    J Neurol Sci; 1998 Apr; 156(2):186-94. PubMed ID: 9588856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generators of visual evoked potentials investigated by dipole tracing in the human occipital cortex.
    Ikeda H; Nishijo H; Miyamoto K; Tamura R; Endo S; Ono T
    Neuroscience; 1998 Jun; 84(3):723-39. PubMed ID: 9579779
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.