These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28667322)

  • 21. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model.
    Ma B; Sun J
    BMC Ecol; 2018 Feb; 18(1):10. PubMed ID: 29466976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau.
    Zhang H; Immerzeel WW; Zhang F; de Kok RJ; Chen D; Yan W
    Sci Total Environ; 2022 Jan; 803():149889. PubMed ID: 34482131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau.
    Gao Y; Zhou X; Wang Q; Wang C; Zhan Z; Chen L; Yan J; Qu R
    Sci Total Environ; 2013 Feb; 444():356-62. PubMed ID: 23280293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau.
    Gao Q; Guo Y; Xu H; Ganjurjav H; Li Y; Wan Y; Qin X; Ma X; Liu S
    Sci Total Environ; 2016 Jun; 554-555():34-41. PubMed ID: 26950617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of plant production to growing/non-growing season asymmetric warming in an alpine meadow of the Northern Tibetan Plateau.
    Fu G; Zhang HR; Sun W
    Sci Total Environ; 2019 Feb; 650(Pt 2):2666-2673. PubMed ID: 30296774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau.
    Wang M; Xu B; Wang N; Cao J; Tie X; Wang H; Zhu C; Yang W
    Sci Total Environ; 2016 Dec; 573():1041-1052. PubMed ID: 27607907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.
    Ganjurjav H; Gao Q; Schwartz MW; Zhu W; Liang Y; Li Y; Wan Y; Cao X; Williamson MA; Jiangcun W; Guo H; Lin E
    Sci Rep; 2016 Mar; 6():23356. PubMed ID: 26983697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere.
    Guan X; Huang J; Guo R; Lin P
    Sci Rep; 2015 Jul; 5():12669. PubMed ID: 26223491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconciling controversies about the 'global warming hiatus'.
    Medhaug I; Stolpe MB; Fischer EM; Knutti R
    Nature; 2017 May; 545(7652):41-47. PubMed ID: 28470193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Air quality and climate connections.
    Fiore AM; Naik V; Leibensperger EM
    J Air Waste Manag Assoc; 2015 Jun; 65(6):645-85. PubMed ID: 25976481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Grassland production in response to changes in biological metrics over the Tibetan Plateau.
    Jin J; Ma X; Chen H; Wang H; Kang X; Wang X; Wang Y; Yong B; Guo F
    Sci Total Environ; 2019 May; 666():641-651. PubMed ID: 30807954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regional temperature and precipitation changes under high-end (≥4°C) global warming.
    Sanderson MG; Hemming DL; Betts RA
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):85-98. PubMed ID: 21115514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau.
    Ganjurjav H; Gao Q; Zhang W; Liang Y; Li Y; Cao X; Wan Y; Li Y; Danjiu L
    PLoS One; 2015; 10(7):e0132044. PubMed ID: 26147223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regional and tele-connected impacts of the Tibetan Plateau surface darkening.
    Tang S; Vlug A; Piao S; Li F; Wang T; Krinner G; Li LZX; Wang X; Wu G; Li Y; Zhang Y; Lian X; Yao T
    Nat Commun; 2023 Jan; 14(1):32. PubMed ID: 36596797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic controls of the Western Tibetan Vortex on Tibetan air temperature.
    Li XF; Fowler HJ; Yu J; Forsythe N; Blenkinsop S; Pritchard D
    Clim Dyn; 2019; 53(7):4267-4290. PubMed ID: 31929690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature leads to annual changes of plant community composition in alpine grasslands on the Qinghai-Tibetan Plateau.
    Ganjurjav H; Gornish ES; Hu G; Wan Y; Li Y; Danjiu L; Gao Q
    Environ Monit Assess; 2018 Sep; 190(10):585. PubMed ID: 30209621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau.
    Tao J; He D; Kennard MJ; Ding C; Bunn SE; Liu C; Jia Y; Che R; Chen Y
    Glob Chang Biol; 2018 May; 24(5):2093-2104. PubMed ID: 29331066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.
    Chen H; Zhu Q; Peng C; Wu N; Wang Y; Fang X; Gao Y; Zhu D; Yang G; Tian J; Kang X; Piao S; Ouyang H; Xiang W; Luo Z; Jiang H; Song X; Zhang Y; Yu G; Zhao X; Gong P; Yao T; Wu J
    Glob Chang Biol; 2013 Oct; 19(10):2940-55. PubMed ID: 23744573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shifting plant species composition in response to climate change stabilizes grassland primary production.
    Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.