These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28667337)

  • 1. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia.
    Yan W; Zheng S; Zhong Y; Shangguan Z
    Sci Rep; 2017 Jun; 7(1):4470. PubMed ID: 28667337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.
    Martorell S; Diaz-Espejo A; Medrano H; Ball MC; Choat B
    Plant Cell Environ; 2014 Mar; 37(3):617-26. PubMed ID: 23937187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.
    Skelton RP; Brodribb TJ; McAdam SAM; Mitchell PJ
    New Phytol; 2017 Sep; 215(4):1399-1412. PubMed ID: 28620915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and physiological responses to successional water deficit and recovery in four warm-temperate woody species.
    Li Q; Wang N; Liu X; Liu S; Wang H; Zhang W; Wang R; Du N
    Physiol Plant; 2019 Dec; 167(4):645-660. PubMed ID: 30637759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species.
    Yao GQ; Li FP; Nie ZF; Bi MH; Jiang H; Liu XD; Wei Y; Fang XW
    Plant Cell Environ; 2021 Feb; 44(2):399-411. PubMed ID: 33131059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas exchange by the mesic-origin, arid land plantation species Robinia pseudoacacia under annual summer reduction in plant hydraulic conductance.
    Miyazawa Y; Du S; Taniguchi T; Yamanaka N; Kumagai T
    Tree Physiol; 2018 Aug; 38(8):1166-1179. PubMed ID: 29608763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine.
    Tombesi S; Nardini A; Frioni T; Soccolini M; Zadra C; Farinelli D; Poni S; Palliotti A
    Sci Rep; 2015 Jul; 5():12449. PubMed ID: 26207993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.
    Blackman CJ; Brodribb TJ; Jordan GJ
    Plant Cell Environ; 2009 Nov; 32(11):1584-95. PubMed ID: 19627564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abscisic acid mediates a divergence in the drought response of two conifers.
    Brodribb TJ; McAdam SA
    Plant Physiol; 2013 Jul; 162(3):1370-7. PubMed ID: 23709665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of site conditions and tree age on Robinia pseudoacacia and Populus simonii leaf hydraulic traits and drought resistance].
    Li JH; Li YY; Zhao LM; Zuo LX
    Ying Yong Sheng Tai Xue Bao; 2012 Sep; 23(9):2397-403. PubMed ID: 23285994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress.
    He F; Zhang H; Tang M
    Mycorrhiza; 2016 May; 26(4):311-23. PubMed ID: 26590998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P; Botía P; Keller M
    J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought.
    Bi MH; Jiang C; Brodribb T; Yang YJ; Yao GQ; Jiang H; Fang XW
    Tree Physiol; 2023 Jun; 43(6):883-892. PubMed ID: 36547259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From comfort zone to mortality: Sequence of physiological stress thresholds in
    Wang X; Fan Y; Zhang C; Zhao Y; Du G; Li M; Si B
    Front Plant Sci; 2023; 14():1149760. PubMed ID: 37008484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).
    Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H
    Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina.
    Resco V; Ewers BE; Sun W; Huxman TE; Weltzin JF; Williams DG
    New Phytol; 2009; 181(3):672-82. PubMed ID: 19032443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in abscisic acid content during and after drought are related to carbohydrate mobilization and hydraulic recovery in poplar stems.
    Brunetti C; Savi T; Nardini A; Loreto F; Gori A; Centritto M
    Tree Physiol; 2020 Jul; 40(8):1043-1057. PubMed ID: 32186735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought.
    Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D
    Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice.
    Wang X; Du T; Huang J; Peng S; Xiong D
    J Exp Bot; 2018 Jul; 69(16):4033-4045. PubMed ID: 29788146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.