BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 28667400)

  • 1. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process.
    Baye J; Galvin C; Shen AQ
    Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow.
    Huang K; Boerhan R; Liu C; Jiang G
    Mol Pharm; 2017 Dec; 14(12):4618-4627. PubMed ID: 29096441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device.
    Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C
    Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital microfluidics for spheroid-based invasion assays.
    Bender BF; Aijian AP; Garrell RL
    Lab Chip; 2016 Apr; 16(8):1505-13. PubMed ID: 27020962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system.
    Karlsson H; Fryknäs M; Larsson R; Nygren P
    Exp Cell Res; 2012 Aug; 318(13):1577-85. PubMed ID: 22487097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of size-controllable tumour spheroids using a microfluidic pillar array (μFPA) device.
    Lim W; Hoang HH; You D; Han J; Lee JE; Kim S; Park S
    Analyst; 2018 Nov; 143(23):5841-5848. PubMed ID: 30379148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Getting to the core of platinum drug bio-distributions: the penetration of anti-cancer platinum complexes into spheroid tumour models.
    Zhang JZ; Bryce NS; Lanzirotti A; Chen CK; Paterson D; de Jonge MD; Howard DL; Hambley TW
    Metallomics; 2012 Nov; 4(11):1209-17. PubMed ID: 23086354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids.
    Anada T; Fukuda J; Sai Y; Suzuki O
    Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased nanoparticle penetration in collagenase-treated multicellular spheroids.
    Goodman TT; Olive PL; Pun SH
    Int J Nanomedicine; 2007; 2(2):265-74. PubMed ID: 17722554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry.
    LaBonia GJ; Lockwood SY; Heller AA; Spence DM; Hummon AB
    Proteomics; 2016 Jun; 16(11-12):1814-21. PubMed ID: 27198560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study.
    Zhao L; Liu Y; Liu Y; Zhang M; Zhang X
    Anal Chem; 2020 Jun; 92(11):7638-7645. PubMed ID: 32374153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivity of well-defined green tea extracts in multicellular tumor spheroids.
    Mueller-Klieser W; Schreiber-Klais S; Walenta S; Kreuter MH
    Int J Oncol; 2002 Dec; 21(6):1307-15. PubMed ID: 12429982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gradient-sized control of tumor spheroids on a single chip.
    Fang G; Lu H; Law A; Gallego-Ortega D; Jin D; Lin G
    Lab Chip; 2019 Dec; 19(24):4093-4103. PubMed ID: 31712797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the Chemotactic Response of Multicellular Spheroids in a Microfluidic Device.
    Ayuso JM; Basheer HA; Monge R; Sánchez-Álvarez P; Doblaré M; Shnyder SD; Vinader V; Afarinkia K; Fernández LJ; Ochoa I
    PLoS One; 2015; 10(10):e0139515. PubMed ID: 26444904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.