BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28667438)

  • 1. Phospholipases Dζ1 and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress.
    Ben Othman A; Ellouzi H; Planchais S; De Vos D; Faiyue B; Carol P; Abdelly C; Savouré A
    Planta; 2017 Oct; 246(4):721-735. PubMed ID: 28667438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double knockouts of phospholipases Dzeta1 and Dzeta2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning.
    Li M; Qin C; Welti R; Wang X
    Plant Physiol; 2006 Feb; 140(2):761-70. PubMed ID: 16384909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis.
    Jayakannan M; Bose J; Babourina O; Shabala S; Massart A; Poschenrieder C; Rengel Z
    J Exp Bot; 2015 Apr; 66(7):1865-75. PubMed ID: 25614660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner.
    Shimamura R; Ohashi Y; Taniguchi YY; Kato M; Tsuge T; Aoyama T
    Plant Mol Biol; 2022 Jan; 108(1-2):31-49. PubMed ID: 34601701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K⁺ retention via regulation of the plasma membrane H⁺-ATPase and by altering SOS1 transcript levels in roots.
    Bose J; Xie Y; Shen W; Shabala S
    J Exp Bot; 2013 Jan; 64(2):471-81. PubMed ID: 23307916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipases AtPLDζ1 and AtPLDζ2 function differently in hypoxia.
    Lindberg S; Premkumar A; Rasmussen U; Schulz A; Lager I
    Physiol Plant; 2018 Jan; 162(1):98-108. PubMed ID: 28834646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism.
    Taniguchi YY; Taniguchi M; Tsuge T; Oka A; Aoyama T
    Planta; 2010 Jan; 231(2):491-7. PubMed ID: 19915862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana.
    Ozgur R; Turkan I; Uzilday B; Sekmen AH
    J Exp Bot; 2014 Mar; 65(5):1377-90. PubMed ID: 24558072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
    Ben Rejeb K; Benzarti M; Debez A; Bailly C; Savouré A; Abdelly C
    J Plant Physiol; 2015 Feb; 174():5-15. PubMed ID: 25462961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency.
    Su Y; Li M; Guo L; Wang X
    Plant J; 2018 Apr; 94(2):315-326. PubMed ID: 29437261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions.
    Feria AB; Bosch N; Sánchez A; Nieto-Ingelmo AI; de la Osa C; Echevarría C; García-Mauriño S; Monreal JA
    Planta; 2016 Oct; 244(4):901-13. PubMed ID: 27306451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.).
    Ranjit SL; Manish P; Penna S
    Protoplasma; 2016 Jan; 253(1):101-10. PubMed ID: 25786350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis.
    Chen Z; Xie Y; Gu Q; Zhao G; Zhang Y; Cui W; Xu S; Wang R; Shen W
    Free Radic Biol Med; 2017 Jul; 108():465-477. PubMed ID: 28412199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.
    Yang T; Zhang L; Hao H; Zhang P; Zhu H; Cheng W; Wang Y; Wang X; Wang C
    Plant J; 2015 Dec; 84(6):1274-94. PubMed ID: 26603028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana.
    Gomez MY; Schroeder MM; Chieb M; McLain NK; Gachomo EW
    BMC Plant Biol; 2023 Jan; 23(1):60. PubMed ID: 36710321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers.
    Korver RA; van den Berg T; Meyer AJ; Galvan-Ampudia CS; Ten Tusscher KHWJ; Testerink C
    Plant Cell Environ; 2020 Jan; 43(1):143-158. PubMed ID: 31430837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis.
    Xie YJ; Xu S; Han B; Wu MZ; Yuan XX; Han Y; Gu Q; Xu DK; Yang Q; Shen WB
    Plant J; 2011 Apr; 66(2):280-92. PubMed ID: 21205037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response.
    Yu Y; Assmann SM
    Plant Cell Environ; 2015 Oct; 38(10):2143-56. PubMed ID: 25808946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Over-expression of a plasma membrane H
    Fan Y; Wan S; Jiang Y; Xia Y; Chen X; Gao M; Cao Y; Luo Y; Zhou Y; Jiang X
    Protoplasma; 2018 Nov; 255(6):1827-1837. PubMed ID: 29948367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response.
    Li G; Xue HW
    Plant Cell; 2007 Jan; 19(1):281-95. PubMed ID: 17259265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.