BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28667488)

  • 1. Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b.
    Jadhav AK; Karuppayil SM
    In Silico Pharmacol; 2016 Dec; 5(1):4. PubMed ID: 28667488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topoisomerase II as a target for repurposed antibiotics in
    Jadhav AK; Karuppayil SM
    In Silico Pharmacol; 2021; 9(1):24. PubMed ID: 33868894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, in silico molecular docking analysis, pharmacokinetic properties and evaluation of antibacterial and antioxidant activities of fluoroquinolines.
    Fekadu M; Zeleke D; Abdi B; Guttula A; Eswaramoorthy R; Melaku Y
    BMC Chem; 2022 Jan; 16(1):1. PubMed ID: 35027086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting.
    Jadhav A; Bansode B; Phule D; Shelar A; Patil R; Gade W; Kharat K; Karuppayil SM
    World J Microbiol Biotechnol; 2017 May; 33(5):96. PubMed ID: 28409362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.
    Kumar A; Bora U
    Interdiscip Sci; 2014 Dec; 6(4):285-91. PubMed ID: 25118649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, Biological Evaluation and Molecular Docking Study of Cyclic Diarylheptanoids as Potential Anticancer Therapeutics.
    Lu Y; Yin W; Alam MS; Kadi AA; Jahng Y; Kwon Y; Rahman AFMM
    Anticancer Agents Med Chem; 2020; 20(4):464-475. PubMed ID: 31763968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the potential anticancer activities of antibiotics as topoisomerase II inhibitors and DNA intercalators:
    Farouk F; Elmaaty AA; Elkamhawy A; Tawfik HO; Alnajjar R; Abourehab MAS; Saleh MA; Eldehna WM; Al-Karmalawy AA
    J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2171029. PubMed ID: 36701269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of human topoisomerase IIalpha by fluoroquinolones and ultraviolet A irradiation.
    Perrone CE; Takahashi KC; Williams GM
    Toxicol Sci; 2002 Sep; 69(1):16-22. PubMed ID: 12215656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Docking Based Analysis to Elucidate the DNA Topoisomerase IIβ as the Potential Target for the Ganoderic Acid; A Natural Therapeutic Agent in Cancer Therapy.
    Sharma KK; Singh B; Mujwar S; Bisen PS
    Curr Comput Aided Drug Des; 2020; 16(2):176-189. PubMed ID: 31429692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2,4-disubstituted 6-fluoroquinolines as potent antiplasmodial agents: QSAR, homology modeling, molecular docking and ADMET studies.
    Shallangwa GA; Mahmud AW; Uzairu A; Ibrahim MT
    J Taibah Univ Med Sci; 2024 Apr; 19(2):233-247. PubMed ID: 38179257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Recognition and Binding Pattern Analysis of Human Topoisomerase II Alpha with Steroidal Drugs: In Silico Study to Switchover the Cancer Treatment.
    Jamal QMS
    Asian Pac J Cancer Prev; 2020 May; 21(5):1349-1355. PubMed ID: 32458643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into Mechanism of Action of Anticancer Benzazoles.
    Ozturk O; Aki-Yalcin E; Yalcin I; Grifitth R
    Curr Top Med Chem; 2020; 20(23):2056-2069. PubMed ID: 32814529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel DNA topoisomerase IIα inhibitors from combined ligand- and structure-based virtual screening.
    Drwal MN; Marinello J; Manzo SG; Wakelin LP; Capranico G; Griffith R
    PLoS One; 2014; 9(12):e114904. PubMed ID: 25489853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of secondary metabolites from Crescentia cujete as promising antibacterial therapeutics targeting type 2A topoisomerases through molecular dynamics simulation.
    Aribisala JO; Abdulsalam RA; Dweba Y; Madonsela K; Sabiu S
    Comput Biol Med; 2022 Jun; 145():105432. PubMed ID: 35344868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput fluorescence anisotropy-based assay for human topoisomerase II β-catalyzed ATP-dependent supercoiled DNA relaxation.
    Shapiro AB; Austin CA
    Anal Biochem; 2014 Mar; 448():23-9. PubMed ID: 24309019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs.
    Shen LL; Baranowski J; Fostel J; Montgomery DA; Lartey PA
    Antimicrob Agents Chemother; 1992 Dec; 36(12):2778-84. PubMed ID: 1336349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring DNA topoisomerases as targets of novel therapeutic agents in the treatment of infectious diseases.
    Tse-Dinh YC
    Infect Disord Drug Targets; 2007 Mar; 7(1):3-9. PubMed ID: 17346206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel topoisomerase II alpha inhibitors by virtual screening, molecular docking, and bioassay.
    Yu C; Hu J; Luyten W; Sun D; Jiang T
    Chem Biol Drug Des; 2022 Jan; 99(1):92-102. PubMed ID: 34310071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs.
    Salerno S; Da Settimo F; Taliani S; Simorini F; La Motta C; Fornaciari G; Marini AM
    Curr Med Chem; 2010; 17(35):4270-90. PubMed ID: 20939813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiazolidine-2,4-dione-linked ciprofloxacin derivatives with broad-spectrum antibacterial, MRSA and topoisomerase inhibitory activities.
    Aziz HA; El-Saghier AMM; Badr M; Abuo-Rahma GEA; Shoman ME
    Mol Divers; 2022 Jun; 26(3):1743-1759. PubMed ID: 34455532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.