These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28667589)

  • 1. Design and evaluation of safety operation VR training system for robotic catheter surgery.
    Wang Y; Guo S; Li Y; Tamiya T; Song Y
    Med Biol Eng Comput; 2018 Jan; 56(1):25-35. PubMed ID: 28667589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.
    Zhang L; Guo S; Yu H; Song Y; Tamiya T; Hirata H; Ishihara H
    Biomed Microdevices; 2018 Feb; 20(2):22. PubMed ID: 29476379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation.
    Wang Y; Guo S; Tamiya T; Hirata H; Ishihara H; Yin X
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27538939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel catheter interaction simulating method for virtual reality interventional training systems.
    Shi P; Guo S; Jin X; Hirata H; Tamiya T; Kawanishi M
    Med Biol Eng Comput; 2023 Mar; 61(3):685-697. PubMed ID: 36585560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A linear stepping endovascular intervention robot with variable stiffness and force sensing.
    He C; Wang S; Zuo S
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):671-682. PubMed ID: 29520525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Reality Simulator Systems in Robotic Surgical Training.
    Mangano A; Gheza F; Giulianotti PC
    Surg Technol Int; 2018 Jun; 32():19-23. PubMed ID: 29689588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.
    PhĂ© V; Cattarino S; Parra J; Bitker MO; Ambrogi V; Vaessen C; RouprĂȘt M
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 26928974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine.
    Khan ZA; Kamal N; Hameed A; Mahmood A; Zainab R; Sadia B; Mansoor SB; Hasan O
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27671920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A virtual reality-based method of decreasing transmission time of visual feedback for a tele-operative robotic catheter operating system.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Med Robot; 2016 Mar; 12(1):32-45. PubMed ID: 25693866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A marker-based contactless catheter-sensing method to detect surgeons' operations for catheterization training systems.
    Guo J; Guo S; Li M; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):76. PubMed ID: 30136209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
    Cha HJ; Yi BJ; Won JY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force calibration for an endovascular robotic system with proximal force measurement.
    Sankaran NK; Chembrammel P; Kesavadas T
    Int J Med Robot; 2020 Apr; 16(2):e2045. PubMed ID: 31765513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a Novel Virtual Reality Training Curriculum for Robotic Cardiac Surgery: A Randomized Trial.
    Valdis M; Chu MW; Schlachta CM; Kiaii B
    Innovations (Phila); 2015; 10(6):383-8. PubMed ID: 26680752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competency based training in robotic surgery: benchmark scores for virtual reality robotic simulation.
    Raison N; Ahmed K; Fossati N; Buffi N; Mottrie A; Dasgupta P; Van Der Poel H
    BJU Int; 2017 May; 119(5):804-811. PubMed ID: 27862825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.
    Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z
    Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.