These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 28667699)
1. Influence of EGCG on α-synuclein (αS) aggregation and identification of their possible binding mode: A computational study using molecular dynamics simulation. Liu X; Zhou S; Shi D; Bai Q; Liu H; Yao X Chem Biol Drug Des; 2018 Jan; 91(1):162-171. PubMed ID: 28667699 [TBL] [Abstract][Full Text] [Related]
2. Exploring the influence of EGCG on the β-sheet-rich oligomers of human islet amyloid polypeptide (hIAPP1-37) and identifying its possible binding sites from molecular dynamics simulation. Wang Q; Guo J; Jiao P; Liu H; Yao X PLoS One; 2014; 9(4):e94796. PubMed ID: 24739876 [TBL] [Abstract][Full Text] [Related]
3. Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics. Coskuner O; Wise-Scira O ACS Chem Neurosci; 2013 Jul; 4(7):1101-13. PubMed ID: 23607785 [TBL] [Abstract][Full Text] [Related]
4. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. Yao Y; Tang Y; Wei G ACS Chem Neurosci; 2020 Dec; 11(24):4351-4361. PubMed ID: 33186020 [TBL] [Abstract][Full Text] [Related]
5. Complex of EGCG with Cu(II) Suppresses Amyloid Aggregation and Cu(II)-Induced Cytotoxicity of α-Synuclein. Teng Y; Zhao J; Ding L; Ding Y; Zhou P Molecules; 2019 Aug; 24(16):. PubMed ID: 31416122 [TBL] [Abstract][Full Text] [Related]
7. Critical nucleus of Greek-key-like core of α-synuclein protofibril and its disruption by dopamine and norepinephrine. Zou Y; Qian Z; Gong Y; Tang Y; Wei G; Zhang Q Phys Chem Chem Phys; 2019 Dec; 22(1):203-211. PubMed ID: 31799519 [TBL] [Abstract][Full Text] [Related]
8. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation. Sanjeev A; Sahu RK; Mattaparthi VSK J Biomol Struct Dyn; 2017 Nov; 35(15):3342-3353. PubMed ID: 27809690 [TBL] [Abstract][Full Text] [Related]
9. Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure. Ponzini E; De Palma A; Cerboni L; Natalello A; Rossi R; Moons R; Konijnenberg A; Narkiewicz J; Legname G; Sobott F; Mauri P; Santambrogio C; Grandori R J Biol Chem; 2019 Apr; 294(14):5657-5665. PubMed ID: 30755483 [TBL] [Abstract][Full Text] [Related]
10. Molecular determinants of the interaction of EGCG with ordered and disordered proteins. Fusco G; Sanz-Hernandez M; Ruggeri FS; Vendruscolo M; Dobson CM; De Simone A Biopolymers; 2018 Aug; 109(10):e23117. PubMed ID: 29603125 [TBL] [Abstract][Full Text] [Related]
11. Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein. Wise-Scira O; Dunn A; Aloglu AK; Sakallioglu IT; Coskuner O ACS Chem Neurosci; 2013 Mar; 4(3):498-508. PubMed ID: 23374074 [TBL] [Abstract][Full Text] [Related]
12. Metal chelator EGCG attenuates Fe(III)-induced conformational transition of α-synuclein and protects AS-PC12 cells against Fe(III)-induced death. Zhao J; Xu L; Liang Q; Sun Q; Chen C; Zhang Y; Ding Y; Zhou P J Neurochem; 2017 Oct; 143(1):136-146. PubMed ID: 28792609 [TBL] [Abstract][Full Text] [Related]
13. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Grelle G; Otto A; Lorenz M; Frank RF; Wanker EE; Bieschke J Biochemistry; 2011 Dec; 50(49):10624-36. PubMed ID: 22054421 [TBL] [Abstract][Full Text] [Related]
14. (-)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. Hudson SA; Ecroyd H; Dehle FC; Musgrave IF; Carver JA J Mol Biol; 2009 Sep; 392(3):689-700. PubMed ID: 19616561 [TBL] [Abstract][Full Text] [Related]
15. The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in the non-amyloid-β component region. Xu L; Bhattacharya S; Thompson D Phys Chem Chem Phys; 2018 Feb; 20(6):4502-4512. PubMed ID: 29372732 [TBL] [Abstract][Full Text] [Related]
16. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy. Roeters SJ; Iyer A; Pletikapić G; Kogan V; Subramaniam V; Woutersen S Sci Rep; 2017 Jan; 7():41051. PubMed ID: 28112214 [TBL] [Abstract][Full Text] [Related]
17. How epigallocatechin gallate binds and assembles oligomeric forms of human alpha-synuclein. Andersen CB; Yoshimura Y; Nielsen J; Otzen DE; Mulder FAA J Biol Chem; 2021; 296():100788. PubMed ID: 34019875 [TBL] [Abstract][Full Text] [Related]
18. Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Mo Y; Lei J; Sun Y; Zhang Q; Wei G Sci Rep; 2016 Sep; 6():33076. PubMed ID: 27620620 [TBL] [Abstract][Full Text] [Related]
19. Computational Study on the Role of γ-Synuclein in Inhibiting the α-Synuclein Aggregation. Sanjeev A; Mattaparthi VSK Cent Nerv Syst Agents Med Chem; 2019; 19(1):24-30. PubMed ID: 30318002 [TBL] [Abstract][Full Text] [Related]
20. Distinct phases of free α-synuclein--a Monte Carlo study. Jónsson SA; Mohanty S; Irbäck A Proteins; 2012 Aug; 80(9):2169-77. PubMed ID: 22552968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]