These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28667962)

  • 1. Development of multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule.
    Yamazaki M; Hosono M; Tang Y; Takahashi M
    Rev Sci Instrum; 2017 Jun; 88(6):063103. PubMed ID: 28667962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-atom Compton profiles due to the intramolecular motions of the H and D atoms in HD.
    Tachibana Y; Onitsuka Y; Kanaya S; Kono H; Takahashi M
    Phys Chem Chem Phys; 2023 Mar; 25(9):6653-6658. PubMed ID: 36790853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane.
    Cooper G; Christensen E; Hitchcock AP
    J Chem Phys; 2007 Aug; 127(8):084315. PubMed ID: 17764256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymptotic behavior of the electron-atom Compton profile due to the intramolecular H-atom motion in H
    Onitsuka Y; Tachibana Y; Takahashi M
    Phys Chem Chem Phys; 2022 Aug; 24(33):19716-19721. PubMed ID: 35792708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new X-ray spectrometer for high-resolution Compton profile measurements at SPring-8.
    Hiraoka N; Itou M; Ohata T; Mizumaki M; Sakurai Y; Sakai N
    J Synchrotron Radiat; 2001 Jan; 8(1):26-32. PubMed ID: 11486493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron scattering at high momentum transfer from methane: analysis of line shapes.
    Vos M
    J Chem Phys; 2010 Feb; 132(7):074306. PubMed ID: 20170226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-sensitivity angle and energy dipersive multichannel electron momentum spectrometer with 2π angle range.
    Tian Q; Wang K; Shan X; Chen X
    Rev Sci Instrum; 2011 Mar; 82(3):033110. PubMed ID: 21456721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution Compton spectroscopy using x-ray microcalorimeters.
    Patel U; Guruswamy T; Krzysko AJ; Charalambous H; Gades L; Wiaderek K; Quaranta O; Ren Y; Yakovenko A; Ruett U; Miceli A
    Rev Sci Instrum; 2022 Nov; 93(11):113105. PubMed ID: 36461526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons.
    Carlsson GA; Carlsson CA; Berggren KF; Ribberfors R
    Med Phys; 1982; 9(6):868-79. PubMed ID: 7162473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an electron-ion coincidence apparatus for molecular-frame electron energy loss spectroscopy studies.
    Watanabe N; Hirayama T; Yamada S; Takahashi M
    Rev Sci Instrum; 2018 Apr; 89(4):043105. PubMed ID: 29716374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent electron Compton scattering and the non-diagonal electron momentum density of solids.
    Mendis BG
    Ultramicroscopy; 2023 Mar; 245():113664. PubMed ID: 36565651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the momentum transfer on the sensitivity of a photon scattering method for the characterization of tissues.
    Leichter I; Karellas A; Craven JD; Greenfield MA
    Med Phys; 1984; 11(1):31-6. PubMed ID: 6700551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy inelastic-scattering beamline for electron momentum density study.
    Sakurai Y
    J Synchrotron Radiat; 1998 May; 5(Pt 3):208-14. PubMed ID: 15263480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron Compton scattering and the measurement of electron momentum distributions in solids.
    Talmantaite A; Hunt MRC; Mendis BG
    J Microsc; 2020 Sep; 279(3):185-188. PubMed ID: 31845338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the spin-dependent effect of pi/2-angle Compton scattering using elliptically polarized synchrotron radiation.
    Sakai N; Seigo M; Kakutani Y; Hiraoka N; Koizumi A
    J Synchrotron Radiat; 2000 Sep; 7(Pt 5):326-32. PubMed ID: 16609216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an (e,2e) electron momentum spectroscopy apparatus using an ultrashort pulsed electron gun.
    Yamazaki M; Kasai Y; Oishi K; Nakazawa H; Takahashi M
    Rev Sci Instrum; 2013 Jun; 84(6):063105. PubMed ID: 23822331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of effective atomic number and electron density of gel dosimeters and human tissues for scattering of gamma rays: momentum transfer, energy and scattering angle dependence.
    Kurudirek M
    Radiat Environ Biophys; 2016 Nov; 55(4):501-507. PubMed ID: 27568398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of electron scattering for studying atomic momentum distributions: the case of graphite and diamond.
    Vos M; Moreh R; Tokési K
    J Chem Phys; 2011 Jul; 135(2):024504. PubMed ID: 21766954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of hydrogen by electron Rutherford backscattering.
    Vos M
    Ultramicroscopy; 2002 Aug; 92(3-4):143-9. PubMed ID: 12213015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion and Electron Momentum Distributions from Single and Double Ionization of Helium Induced by Compton Scattering.
    Kircher M; Trinter F; Grundmann S; Kastirke G; Weller M; Vela-Perez I; Khan A; Janke C; Waitz M; Zeller S; Mletzko T; Kirchner D; Honkimäki V; Houamer S; Chuluunbaatar O; Popov YV; Volobuev IP; Schöffler MS; Schmidt LPH; Jahnke T; Dörner R
    Phys Rev Lett; 2022 Feb; 128(5):053001. PubMed ID: 35179929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.