These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28668040)

  • 1. The excess proton at the air-water interface: The role of instantaneous liquid interfaces.
    Giberti F; Hassanali AA
    J Chem Phys; 2017 Jun; 146(24):244703. PubMed ID: 28668040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the behaviour of the hydrated excess proton at hydrophobic interfaces.
    Kumar R; Knight C; Voth GA
    Faraday Discuss; 2013; 167():263-78. PubMed ID: 24640495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air-Water Interface?
    Li Z; Li C; Wang Z; Voth GA
    J Phys Chem B; 2020 Jun; 124(24):5039-5046. PubMed ID: 32426982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol-water solutions.
    Morrone JA; Haslinger KE; Tuckerman ME
    J Phys Chem B; 2006 Mar; 110(8):3712-20. PubMed ID: 16494428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface.
    Tse YL; Chen C; Lindberg GE; Kumar R; Voth GA
    J Am Chem Soc; 2015 Oct; 137(39):12610-6. PubMed ID: 26366480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Molecular Dynamics Simulations of an Excess Proton in a Triethylene Glycol-Water Solution: Solvation Structure, Mechanism, and Kinetics.
    McDonnell MT; Xu H; Keffer DJ
    J Phys Chem B; 2016 Jun; 120(23):5223-42. PubMed ID: 27218455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations.
    Murdachaew G; Nathanson GM; Benny Gerber R; Halonen L
    Phys Chem Chem Phys; 2016 Nov; 18(43):29756-29770. PubMed ID: 27777998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations predict an accelerated dissociation of H2CO3 at the air-water interface.
    Galib M; Hanna G
    Phys Chem Chem Phys; 2014 Dec; 16(46):25573-82. PubMed ID: 25351335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrated excess proton at water-hydrophobic interfaces.
    Iuchi S; Chen H; Paesani F; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4017-30. PubMed ID: 18821788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved multistate empirical valence bond model for aqueous proton solvation and transport.
    Wu Y; Chen H; Wang F; Paesani F; Voth GA
    J Phys Chem B; 2008 Jan; 112(2):467-82. PubMed ID: 17999484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the Delocalized Proton in Concerted Proton Transfer in Bulk Water.
    Yan S; Wang B; Lin H
    J Chem Theory Comput; 2023 Jan; ():. PubMed ID: 36630655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of hydrated proton diffusion in ab initio molecular dynamics.
    Tse YL; Knight C; Voth GA
    J Chem Phys; 2015 Jan; 142(1):014104. PubMed ID: 25573550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of atmospheric oxidants at the air-water interface: solvation and accommodation of OH and O3.
    Vieceli J; Roeselova M; Potter N; Dang LX; Garrett BC; Tobias DJ
    J Phys Chem B; 2005 Aug; 109(33):15876-92. PubMed ID: 16853017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of Excess Hydrated Proton at the Water-Air Interface.
    Das S; Imoto S; Sun S; Nagata Y; Backus EHG; Bonn M
    J Am Chem Soc; 2020 Jan; 142(2):945-952. PubMed ID: 31867949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process.
    Lowe BM; Skylaris CK; Green NG
    J Colloid Interface Sci; 2015 Aug; 451():231-44. PubMed ID: 25898118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.
    Martins-Costa MT; García-Prieto FF; Ruiz-López MF
    Org Biomol Chem; 2015 Feb; 13(6):1673-9. PubMed ID: 25451554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.