These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 28668062)
1. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. Dral PO; Owens A; Yurchenko SN; Thiel W J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical machine learning of potential energy surfaces. Dral PO; Owens A; Dral A; Csányi G J Chem Phys; 2020 May; 152(20):204110. PubMed ID: 32486656 [TBL] [Abstract][Full Text] [Related]
3. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces. Dawes R; Wagner AF; Thompson DL J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124 [TBL] [Abstract][Full Text] [Related]
4. VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces. Zhang L; Zhang S; Owens A; Yurchenko SN; Dral PO Sci Data; 2022 Mar; 9(1):84. PubMed ID: 35277513 [TBL] [Abstract][Full Text] [Related]
5. Fast Near Lu F; Cheng L; DiRisio RJ; Finney JM; Boyer MA; Moonkaen P; Sun J; Lee SJR; Deustua JE; Miller TF; McCoy AB J Phys Chem A; 2022 Jun; 126(25):4013-4024. PubMed ID: 35715227 [TBL] [Abstract][Full Text] [Related]
6. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232 [TBL] [Abstract][Full Text] [Related]
7. CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule. Barletta P; Shirin SV; Zobov NF; Polyansky OL; Tennyson J; Valeev EF; Császár AG J Chem Phys; 2006 Nov; 125(20):204307. PubMed ID: 17144700 [TBL] [Abstract][Full Text] [Related]
8. Accurate ab initio vibrational energies of methyl chloride. Owens A; Yurchenko SN; Yachmenev A; Tennyson J; Thiel W J Chem Phys; 2015 Jun; 142(24):244306. PubMed ID: 26133427 [TBL] [Abstract][Full Text] [Related]
9. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning. Bučko T; Gešvandtnerová M; Rocca D J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917 [TBL] [Abstract][Full Text] [Related]
10. High Accuracy ab Initio Calculations of Rotational-Vibrational Levels of the HCN/HNC System. Makhnev VY; Kyuberis AA; Zobov NF; Lodi L; Tennyson J; Polyansky OL J Phys Chem A; 2018 Feb; 122(5):1326-1343. PubMed ID: 29251934 [TBL] [Abstract][Full Text] [Related]
11. High-level ab initio potential energy surfaces and vibrational energies of H2CS. Yachmenev A; Yurchenko SN; Ribeyre T; Thiel W J Chem Phys; 2011 Aug; 135(7):074302. PubMed ID: 21861565 [TBL] [Abstract][Full Text] [Related]
12. Molecular dimers of methane clathrates: ab initio potential energy surfaces and variational vibrational states. Metz MP; Szalewicz K; Sarka J; Tóbiás R; Császár AG; Mátyus E Phys Chem Chem Phys; 2019 Jun; 21(25):13504-13525. PubMed ID: 31206103 [TBL] [Abstract][Full Text] [Related]
13. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. Ludwig J; Vlachos DG J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200 [TBL] [Abstract][Full Text] [Related]
14. Acceleration of saddle-point searches with machine learning. Peterson AA J Chem Phys; 2016 Aug; 145(7):074106. PubMed ID: 27544086 [TBL] [Abstract][Full Text] [Related]
15. Configuration-Space Sampling in Potential Energy Surface Fitting: A Space-Reduced Bond-Order Grid Approach. Rampino S J Phys Chem A; 2016 Jul; 120(27):4683-92. PubMed ID: 26674105 [TBL] [Abstract][Full Text] [Related]
16. Variational calculation of highly excited rovibrational energy levels of H2O2. Polyansky OL; Kozin IN; Ovsyannikov RI; Małyszek P; Koput J; Tennyson J; Yurchenko SN J Phys Chem A; 2013 Aug; 117(32):7367-77. PubMed ID: 23611762 [TBL] [Abstract][Full Text] [Related]
17. Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations. Chen WK; Wang SR; Liu XY; Fang WH; Cui G Molecules; 2023 May; 28(10):. PubMed ID: 37241962 [TBL] [Abstract][Full Text] [Related]
18. Positioning of grid points for spanning potential energy surfaces-How much effort is really needed? Schneider M; Born D; Kästner J; Rauhut G J Chem Phys; 2023 Apr; 158(14):144118. PubMed ID: 37061506 [TBL] [Abstract][Full Text] [Related]
19. Free energy perturbation study of water dimer dissociation kinetics. Ming Y; Lai G; Tong C; Wood RH; Doren DJ J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604 [TBL] [Abstract][Full Text] [Related]
20. Theoretical investigation of the He-I2(E3Πg) ion-pair state: ab initio intermolecular potential and vibrational levels. Kalemos A; Valdés Á; Prosmiti R J Chem Phys; 2012 Jul; 137(3):034303. PubMed ID: 22830698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]