BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 28668127)

  • 41. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA.
    Drohat AC; Maiti A
    Org Biomol Chem; 2014 Nov; 12(42):8367-78. PubMed ID: 25181003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases.
    Schärer OD; Nash HM; Jiricny J; Laval J; Verdine GL
    J Biol Chem; 1998 Apr; 273(15):8592-7. PubMed ID: 9535832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous Short- and Long-Patch Base Excision Repair (BER) Assay in Live Mammalian Cells.
    Roy R
    Methods Mol Biol; 2023; 2701():3-19. PubMed ID: 37574472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-turnover and pre-steady-state kinetics of the reaction of the adenine glycosylase MutY with mismatch-containing DNA substrates.
    Porello SL; Leyes AE; David SS
    Biochemistry; 1998 Oct; 37(42):14756-64. PubMed ID: 9778350
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Initiation of base excision repair: glycosylase mechanisms and structures.
    McCullough AK; Dodson ML; Lloyd RS
    Annu Rev Biochem; 1999; 68():255-85. PubMed ID: 10872450
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities.
    Chaim IA; Nagel ZD; Jordan JJ; Mazzucato P; Ngo LP; Samson LD
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10379-E10388. PubMed ID: 29122935
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymology of the repair of free radicals-induced DNA damage.
    Gros L; Saparbaev MK; Laval J
    Oncogene; 2002 Dec; 21(58):8905-25. PubMed ID: 12483508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Base excision repair of DNA: glycosylases].
    Korolev BG
    Genetika; 2005 Jun; 41(6):725-35. PubMed ID: 16080596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry.
    Yuen PK; Green SA; Ashby J; Lay KT; Santra A; Chen X; Horvath MP; David SS
    ACS Chem Biol; 2019 Jan; 14(1):27-36. PubMed ID: 30500207
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnesium, essential for base excision repair enzymes, inhibits substrate binding of N-methylpurine-DNA glycosylase.
    Adhikari S; Toretsky JA; Yuan L; Roy R
    J Biol Chem; 2006 Oct; 281(40):29525-32. PubMed ID: 16901897
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA repair enzymes.
    Evans TC; Nichols NM
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.9. PubMed ID: 18972391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigations of pyrimidine dimer glycosylases--a paradigm for DNA base excision repair enzymology.
    Lloyd RS
    Mutat Res; 2005 Sep; 577(1-2):77-91. PubMed ID: 15923014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of DNA glycosylase activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Darwanto A; Farrel A; Rogstad DK; Sowers LC
    Anal Biochem; 2009 Nov; 394(1):13-23. PubMed ID: 19607800
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney.
    Ebrahimkhani MR; Daneshmand A; Mazumder A; Allocca M; Calvo JA; Abolhassani N; Jhun I; Muthupalani S; Ayata C; Samson LD
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):E4878-86. PubMed ID: 25349415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.
    Bilotti K; Kennedy EE; Li C; Delaney S
    DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress.
    Akbari M; Otterlei M; Peña-Diaz J; Krokan HE
    Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.