BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28668128)

  • 1. Transient Kinetic Methods for Mechanistic Characterization of DNA Binding and Nucleotide Flipping.
    Hendershot JM; O'Brien PJ
    Methods Enzymol; 2017; 592():377-415. PubMed ID: 28668128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase.
    Hendershot JM; Wolfe AE; O'Brien PJ
    Biochemistry; 2011 Mar; 50(11):1864-74. PubMed ID: 21244040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using
    Dow BJ; Malik SS; Drohat AC
    J Am Chem Soc; 2019 Mar; 141(12):4952-4962. PubMed ID: 30841696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase.
    Wolfe AE; O'Brien PJ
    Biochemistry; 2009 Dec; 48(48):11357-69. PubMed ID: 19883114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair.
    Coey CT; Drohat AC
    Methods Enzymol; 2017; 592():357-376. PubMed ID: 28668127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping.
    Hendershot JM; O'Brien PJ
    Nucleic Acids Res; 2014 Nov; 42(20):12681-90. PubMed ID: 25324304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase.
    Stivers JT; Pankiewicz KW; Watanabe KA
    Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient recognition of an unpaired lesion by a DNA repair glycosylase.
    Lyons DM; O'Brien PJ
    J Am Chem Soc; 2009 Dec; 131(49):17742-3. PubMed ID: 19924854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.
    Taylor EL; O'Brien PJ
    Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origins of high-affinity enzyme binding to an extrahelical DNA base.
    Krosky DJ; Song F; Stivers JT
    Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base-flipping mutations of uracil DNA glycosylase: substrate rescue using a pyrene nucleotide wedge.
    Jiang YL; Stivers JT; Song F
    Biochemistry; 2002 Sep; 41(37):11248-54. PubMed ID: 12220190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Damage detection and base flipping in direct DNA alkylation repair.
    Yang CG; Garcia K; He C
    Chembiochem; 2009 Feb; 10(3):417-23. PubMed ID: 19145606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase.
    Walker RK; McCullough AK; Lloyd RS
    Biochemistry; 2006 Nov; 45(47):14192-200. PubMed ID: 17115714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA.
    Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA
    Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.