These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 28668128)
1. Transient Kinetic Methods for Mechanistic Characterization of DNA Binding and Nucleotide Flipping. Hendershot JM; O'Brien PJ Methods Enzymol; 2017; 592():377-415. PubMed ID: 28668128 [TBL] [Abstract][Full Text] [Related]
2. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue. Hendershot JM; O'Brien PJ J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435 [TBL] [Abstract][Full Text] [Related]
3. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase. Hendershot JM; Wolfe AE; O'Brien PJ Biochemistry; 2011 Mar; 50(11):1864-74. PubMed ID: 21244040 [TBL] [Abstract][Full Text] [Related]
4. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using Dow BJ; Malik SS; Drohat AC J Am Chem Soc; 2019 Mar; 141(12):4952-4962. PubMed ID: 30841696 [TBL] [Abstract][Full Text] [Related]
5. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by human alkyladenine DNA glycosylase. Wolfe AE; O'Brien PJ Biochemistry; 2009 Dec; 48(48):11357-69. PubMed ID: 19883114 [TBL] [Abstract][Full Text] [Related]
6. Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair. Coey CT; Drohat AC Methods Enzymol; 2017; 592():357-376. PubMed ID: 28668127 [TBL] [Abstract][Full Text] [Related]
7. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping. Hendershot JM; O'Brien PJ Nucleic Acids Res; 2014 Nov; 42(20):12681-90. PubMed ID: 25324304 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Stivers JT; Pankiewicz KW; Watanabe KA Biochemistry; 1999 Jan; 38(3):952-63. PubMed ID: 9893991 [TBL] [Abstract][Full Text] [Related]
9. Efficient recognition of an unpaired lesion by a DNA repair glycosylase. Lyons DM; O'Brien PJ J Am Chem Soc; 2009 Dec; 131(49):17742-3. PubMed ID: 19924854 [TBL] [Abstract][Full Text] [Related]
10. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA. Taylor EL; O'Brien PJ Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480 [TBL] [Abstract][Full Text] [Related]
11. The origins of high-affinity enzyme binding to an extrahelical DNA base. Krosky DJ; Song F; Stivers JT Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884 [TBL] [Abstract][Full Text] [Related]
12. Base-flipping mutations of uracil DNA glycosylase: substrate rescue using a pyrene nucleotide wedge. Jiang YL; Stivers JT; Song F Biochemistry; 2002 Sep; 41(37):11248-54. PubMed ID: 12220190 [TBL] [Abstract][Full Text] [Related]
13. Damage detection and base flipping in direct DNA alkylation repair. Yang CG; Garcia K; He C Chembiochem; 2009 Feb; 10(3):417-23. PubMed ID: 19145606 [TBL] [Abstract][Full Text] [Related]
14. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases. Shi R; Shen XX; Rokas A; Eichman BF Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543 [TBL] [Abstract][Full Text] [Related]
15. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531 [TBL] [Abstract][Full Text] [Related]
16. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC. Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852 [TBL] [Abstract][Full Text] [Related]
17. Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase. Walker RK; McCullough AK; Lloyd RS Biochemistry; 2006 Nov; 45(47):14192-200. PubMed ID: 17115714 [TBL] [Abstract][Full Text] [Related]
18. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase. Hollis T; Lau A; Ellenberger T Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229 [TBL] [Abstract][Full Text] [Related]
19. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Slupphaug G; Mol CD; Kavli B; Arvai AS; Krokan HE; Tainer JA Nature; 1996 Nov; 384(6604):87-92. PubMed ID: 8900285 [TBL] [Abstract][Full Text] [Related]
20. An unprecedented nucleic acid capture mechanism for excision of DNA damage. Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]