BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28668128)

  • 21. The role of base flipping in damage recognition and catalysis by T4 endonuclease V.
    McCullough AK; Dodson ML; Schärer OD; Lloyd RS
    J Biol Chem; 1997 Oct; 272(43):27210-7. PubMed ID: 9341165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway.
    Raper AT; Maxwell BA; Suo Z
    J Mol Biol; 2021 Mar; 433(5):166811. PubMed ID: 33450252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins.
    Kladova OA; Alekseeva IV; Saparbaev M; Fedorova OS; Kuznetsov NA
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase.
    Maiti A; Morgan MT; Drohat AC
    J Biol Chem; 2009 Dec; 284(52):36680-36688. PubMed ID: 19880517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation.
    Lukina MV; Koval VV; Lomzov AA; Zharkov DO; Fedorova OS
    Mol Biosyst; 2017 Sep; 13(10):1954-1966. PubMed ID: 28770925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA.
    Parikh SS; Mol CD; Slupphaug G; Bharati S; Krokan HE; Tainer JA
    EMBO J; 1998 Sep; 17(17):5214-26. PubMed ID: 9724657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analysis of the base-flipping mechanism of uracil DNA glycosylase.
    Jiang YL; Stivers JT
    Biochemistry; 2002 Sep; 41(37):11236-47. PubMed ID: 12220189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision.
    Lau AY; Schärer OD; Samson L; Verdine GL; Ellenberger T
    Cell; 1998 Oct; 95(2):249-58. PubMed ID: 9790531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
    Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS
    Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.
    Kuznetsov NA; Kiryutin AS; Kuznetsova AA; Panov MS; Barsukova MO; Yurkovskaya AV; Fedorova OS
    J Biomol Struct Dyn; 2017 Apr; 35(5):950-967. PubMed ID: 27025273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in the structural mechanisms of DNA glycosylases.
    Brooks SC; Adhikary S; Rubinson EH; Eichman BF
    Biochim Biophys Acta; 2013 Jan; 1834(1):247-71. PubMed ID: 23076011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-step nucleotide-flipping mechanism enables kinetic discrimination of DNA lesions by AGT.
    Hu J; Ma A; Dinner AR
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4615-20. PubMed ID: 18353991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
    Mullins EA; Rodriguez AA; Bradley NP; Eichman BF
    Trends Biochem Sci; 2019 Sep; 44(9):765-781. PubMed ID: 31078398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the Flipping Dynamics of 1, N6-Ethenoadenine in Alkyladenine DNA Glycosylase.
    Liu B; Qi Y; Wang X; Gao X; Yao Y; Zhang L
    J Phys Chem B; 2024 Feb; 128(7):1606-1617. PubMed ID: 38331753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of DNA binding and nucleotide flipping kinetics using two-color two-photon fluorescence lifetime imaging microscopy.
    Robinson T; Valluri P; Kennedy G; Sardini A; Dunsby C; Neil MA; Baldwin GS; French PM; de Mello AJ
    Anal Chem; 2014 Nov; 86(21):10732-40. PubMed ID: 25303623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic Milestones of Damage Recognition by DNA Glycosylases of the Helix-Hairpin-Helix Structural Superfamily.
    Kuznetsov NA; Fedorova OS
    Adv Exp Med Biol; 2020; 1241():1-18. PubMed ID: 32383112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.
    Buechner CN; Maiti A; Drohat AC; Tessmer I
    Nucleic Acids Res; 2015 Mar; 43(5):2716-29. PubMed ID: 25712093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of base flipping in specific recognition of damaged DNA by repair enzymes.
    Fuxreiter M; Luo N; Jedlovszky P; Simon I; Osman R
    J Mol Biol; 2002 Nov; 323(5):823-34. PubMed ID: 12417196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.
    Zhang Y; O'Brien PJ
    ACS Chem Biol; 2015 Nov; 10(11):2606-15. PubMed ID: 26317160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.