BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2866813)

  • 1. Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development.
    Berger B; Verney C; Gaspar P; Febvret A
    Brain Res; 1985 Nov; 355(1):141-4. PubMed ID: 2866813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional development of norepinephrine, dopamine-beta-hydroxylase and tyrosine hydroxylase in the rat brain subsequent to neonatal treatment with subcutaneous 6-hydroxydopamine.
    Schmidt RH; Bhatnagar RK
    Brain Res; 1979 Apr; 166(2):293-308. PubMed ID: 34468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase.
    Gaspar P; Berger B; Febvret A; Vigny A; Henry JP
    J Comp Neurol; 1989 Jan; 279(2):249-71. PubMed ID: 2563268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical characterization of the dopaminergic and noradrenergic innervation of the rat neocortex during early ontogeny.
    Berger B; Verney C; Gay M; Vigny A
    Prog Brain Res; 1983; 58():263-7. PubMed ID: 6138810
    [No Abstract]   [Full Text] [Related]  

  • 5. Regional changes in [3H]-noradrenaline uptake, catecholamines and catecholamine synthetic and catabolic enzymes in rat brain following neonatal 6-hydroxydopamine treatment.
    Jonsson G; Sachs C
    Med Biol; 1976 Aug; 54(4):286-97. PubMed ID: 8670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient expression of tyrosine hydroxylase in some neurons of the developing inferior colliculus of the rat.
    Jaeger CB; Joh TH
    Brain Res; 1983 Dec; 313(1):128-32. PubMed ID: 6140992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemical evidence for phenylethanolamine-N-methyltransferase-positive/tyrosine hydroxylase-negative neurones in the retina and the posterior hypothalamus of the rat.
    Foster GA; Hökfelt T; Coyle JT; Goldstein M
    Brain Res; 1985 Mar; 330(1):183-8. PubMed ID: 2859084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the effects of neonatal subcutaneous 6-hydroxydopamine on noradrenergic and dopaminergic innervation of the cerebral cortex.
    Schmidt RH; Bhatnagar RK
    Brain Res; 1979 Apr; 166(2):309-19. PubMed ID: 34469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative microdistribution of the activity of catecholamine-synthesizing enzymes in horizontal sections of the rat lower brainstem.
    Chamba G; Denoroy L; Renaud B
    J Neurochem; 1982 Aug; 39(2):577-81. PubMed ID: 6123560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre- and postnatal development of rat retroperitoneal paraganglia.
    Ahonen M; Soinila S; Joh TH
    J Auton Nerv Syst; 1987 Feb; 18(2):111-20. PubMed ID: 2883207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine neurotransmitters and synthetic enzymes in the spinal cord of the rat.
    Reid JL; Zivin JA; Foppen FH; Kopin IJ
    Life Sci; 1975 Mar; 16(6):975-84. PubMed ID: 1128163
    [No Abstract]   [Full Text] [Related]  

  • 12. Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain.
    Armstrong DM; Pickel VM; Joh TH; Reis DJ; Miller RJ
    J Comp Neurol; 1981 Mar; 196(3):505-17. PubMed ID: 6163796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time course study of changes in the activity of the catecholamine synthesizing enzymes in the rat medulla oblongata after intraventricular injection of 6-hydroxydopamine.
    Fety R; Renaud B
    Brain Res; 1983 Aug; 272(2):277-82. PubMed ID: 6137262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of catecholamine turnover by variations of enzyme levels.
    Pletscher A
    Pharmacol Rev; 1972 Jun; 24(2):225-32. PubMed ID: 4404611
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain.
    Kaneko T; Akiyama H; Nagatsu I; Mizuno N
    Brain Res; 1990 Jan; 507(1):151-4. PubMed ID: 1967973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a single and repeated stress exposure on gene expression of catecholamine biosynthetic enzymes in brainstem catecholaminergic cell groups in rats.
    Mravec B; Vargovic P; Filipcik P; Novak M; Kvetnansky R
    Eur J Neurosci; 2015 Jul; 42(2):1872-86. PubMed ID: 25994480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat.
    Everitt BJ; Hökfelt T; Terenius L; Tatemoto K; Mutt V; Goldstein M
    Neuroscience; 1984 Feb; 11(2):443-62. PubMed ID: 6144080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of catecholamine biosynthetic enzymes.
    Ciaranello RD
    Psychopharmacol Bull; 1979 Jan; 15(1):59. PubMed ID: 33411
    [No Abstract]   [Full Text] [Related]  

  • 19. Genetic regulation of the catecholamine biosynthetic enzymes. II. Inheritance of tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine N-methyltransferase.
    Ciaranello RD; Hoffman HJ; Shire JG; Axelrod J
    J Biol Chem; 1974 Jul; 249(14):4528-36. PubMed ID: 4152311
    [No Abstract]   [Full Text] [Related]  

  • 20. Biosynthetic enzyme activities and catecholamines in adrenal glands of genetic and experimental hypertensive rats.
    Grobecker H; Saavedra JM; Weise VK
    Circ Res; 1982 May; 50(5):742-6. PubMed ID: 6122511
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.