These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2866815)

  • 1. Dopamine decreases cell excitability in rat striatal neurons by pre- and postsynaptic mechanisms.
    Mercuri N; Bernardi G; Calabresi P; Cotugno A; Levi G; Stanzione P
    Brain Res; 1985 Dec; 358(1-2):110-21. PubMed ID: 2866815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity.
    Grace AA; Bunney BS
    Brain Res; 1985 May; 333(2):271-84. PubMed ID: 2986775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons.
    Calabresi P; Centonze D; Marfia GA; Pisani A; Bernardi G
    Br J Pharmacol; 1999 Feb; 126(3):689-96. PubMed ID: 10188980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease.
    Calabresi P; Mercuri NB; Sancesario G; Bernardi G
    Brain; 1993 Apr; 116 ( Pt 2)():433-52. PubMed ID: 8096420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis.
    Calabresi P; Mercuri NB; Stefani A; Bernardi G
    J Neurophysiol; 1990 Apr; 63(4):651-62. PubMed ID: 2341866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic modulation by GABAB receptors of glutamatergic excitation and GABAergic inhibition of neostriatal neurons.
    Nisenbaum ES; Berger TW; Grace AA
    J Neurophysiol; 1992 Feb; 67(2):477-81. PubMed ID: 1349038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine inhibition: enhancement of GABA activity and potassium channel activation in hypothalamic and arcuate nucleus neurons.
    Belousov AB; van den Pol AN
    J Neurophysiol; 1997 Aug; 78(2):674-88. PubMed ID: 9307104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terminal excitability of the corticostriatal pathway. I. Regulation by dopamine receptor stimulation.
    Garcia-Munoz M; Young SJ; Groves PM
    Brain Res; 1991 Jun; 551(1-2):195-206. PubMed ID: 1913151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic long-term changes in excitability of the corticostriatal pathway.
    Garcia-Munoz M; Young SJ; Groves PM
    Neuroreport; 1992 Apr; 3(4):357-60. PubMed ID: 1325202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine modulation of membrane and synaptic properties of interneurons in rat cerebral cortex.
    Zhou FM; Hablitz JJ
    J Neurophysiol; 1999 Mar; 81(3):967-76. PubMed ID: 10085325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of GABA systems in feedback regulation of glutamate-and GABA-mediated synaptic potentials in rat neostriatum.
    Calabresi P; Mercuri NB; De Murtas M; Bernardi G
    J Physiol; 1991; 440():581-99. PubMed ID: 1666654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.
    Thibault D; Giguère N; Loustalot F; Bourque MJ; Ducrot C; El Mestikawy S; Trudeau LÉ
    Brain Struct Funct; 2016 May; 221(4):2093-107. PubMed ID: 25782435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):986-98. PubMed ID: 1684383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic regulation of dopaminergic transmission in the striatum.
    Glowinski J; Chéramy A; Romo R; Barbeito L
    Cell Mol Neurobiol; 1988 Mar; 8(1):7-17. PubMed ID: 2900072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine presynaptically depresses fast inhibitory synaptic transmission via D4 receptor-protein kinase A pathway in the rat dorsolateral septal nucleus.
    Asaumi Y; Hasuo H; Akasu T
    J Neurophysiol; 2006 Aug; 96(2):591-601. PubMed ID: 16641381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered function of glutamatergic cortico-striatal synapses causes output pathway abnormalities in a chronic model of parkinsonism.
    Warre R; Thiele S; Talwar S; Kamal M; Johnston TH; Wang S; Lam D; Lo C; Khademullah CS; Perera G; Reyes G; Sun XS; Brotchie JM; Nash JE
    Neurobiol Dis; 2011 Mar; 41(3):591-604. PubMed ID: 20971190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex.
    Gulledge AT; Jaffe DB
    J Neurophysiol; 2001 Aug; 86(2):586-95. PubMed ID: 11495934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons.
    Herrling PL; Hull CD
    Brain Res; 1980 Jun; 192(2):441-62. PubMed ID: 7378798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.