BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28668365)

  • 1. Recurrent neural networks as versatile tools of neuroscience research.
    Barak O
    Curr Opin Neurobiol; 2017 Oct; 46():1-6. PubMed ID: 28668365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
    Bitzer S; Kiebel SJ
    Biol Cybern; 2012 Jul; 106(4-5):201-17. PubMed ID: 22581026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural circuits as computational dynamical systems.
    Sussillo D
    Curr Opin Neurobiol; 2014 Apr; 25():156-63. PubMed ID: 24509098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring weight initialization, diversity of solutions, and degradation in recurrent neural networks trained for temporal and decision-making tasks.
    Jarne C; Laje R
    J Comput Neurosci; 2023 Nov; 51(4):407-431. PubMed ID: 37561278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.
    Sussillo D; Barak O
    Neural Comput; 2013 Mar; 25(3):626-49. PubMed ID: 23272922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the next generation of recurrent network models for cognitive neuroscience.
    Yang GR; Molano-Mazón M
    Curr Opin Neurobiol; 2021 Oct; 70():182-192. PubMed ID: 34844122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training recurrent networks by Evolino.
    Schmidhuber J; Wierstra D; Gagliolo M; Gomez F
    Neural Comput; 2007 Mar; 19(3):757-79. PubMed ID: 17298232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Recurrent Neural Networks in Environmental Factor Forecasting: A Review.
    Chen Y; Cheng Q; Cheng Y; Yang H; Yu H
    Neural Comput; 2018 Nov; 30(11):2855-2881. PubMed ID: 30216144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function.
    Zhang L; Yi Z
    IEEE Trans Neural Netw; 2011 Jul; 22(7):1021-31. PubMed ID: 21609880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational neuroscience: beyond the local circuit.
    Sompolinsky H
    Curr Opin Neurobiol; 2014 Apr; 25():xiii-xviii. PubMed ID: 24602868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to generate combinatorial action sequences utilizing the initial sensitivity of deterministic dynamical systems.
    Nishimoto R; Tani J
    Neural Netw; 2004 Sep; 17(7):925-33. PubMed ID: 15312836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modeling of neural plasticity for self-organization of neural networks.
    Chrol-Cannon J; Jin Y
    Biosystems; 2014 Nov; 125():43-54. PubMed ID: 24769242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The super-Turing computational power of plastic recurrent neural networks.
    Cabessa J; Siegelmann HT
    Int J Neural Syst; 2014 Dec; 24(8):1450029. PubMed ID: 25354762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and challenges in probing the human brain.
    Poldrack RA; Farah MJ
    Nature; 2015 Oct; 526(7573):371-9. PubMed ID: 26469048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroscience nanotechnology: progress, opportunities and challenges.
    Silva GA
    Nat Rev Neurosci; 2006 Jan; 7(1):65-74. PubMed ID: 16371951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing a joint future of neuroscience and neuromorphic engineering.
    Zenke F; Bohté SM; Clopath C; Comşa IM; Göltz J; Maass W; Masquelier T; Naud R; Neftci EO; Petrovici MA; Scherr F; Goodman DFM
    Neuron; 2021 Feb; 109(4):571-575. PubMed ID: 33600754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.