These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28668741)

  • 1. Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden.
    Volchko Y; Norrman J; Rosén L; Karlfeldt Fedje K
    Sci Total Environ; 2017 Dec; 605-606():300-314. PubMed ID: 28668741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of metal polluted hotspot areas through enhanced soil washing--evaluation of leaching methods.
    Fedje KK; Yillin L; Strömvall AM
    J Environ Manage; 2013 Oct; 128():489-96. PubMed ID: 23811538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced soil washing with copper recovery using chemical precipitation.
    Fedje KK; Strömvall AM
    J Environ Manage; 2019 Apr; 236():68-74. PubMed ID: 30716692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost-benefit analysis as a part of sustainability assessment of remediation alternatives for contaminated land.
    Söderqvist T; Brinkhoff P; Norberg T; Rosén L; Back PE; Norrman J
    J Environ Manage; 2015 Jul; 157():267-78. PubMed ID: 25913468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of PFAS soil remediation alternatives at a civilian airport using cost-benefit analysis.
    Drenning P; Volchko Y; Ahrens L; Rosén L; Söderqvist T; Norrman J
    Sci Total Environ; 2023 Jul; 882():163664. PubMed ID: 37088381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica.
    Stark SC; Snape I; Graham NJ; Brennan JC; Gore DB
    J Environ Monit; 2008 Jan; 10(1):60-70. PubMed ID: 18175018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.
    Lassesson H; Fedje KK; Steenari BM
    Waste Manag Res; 2014 Aug; 32(8):755-62. PubMed ID: 25106538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Friends or foes? Monetized Life Cycle Assessment and Cost-Benefit Analysis of the site remediation of a former gas plant.
    Huysegoms L; Rousseau S; Cappuyns V
    Sci Total Environ; 2018 Apr; 619-620():258-271. PubMed ID: 29149750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decision making under uncertainty in case of soil remediation.
    Scholz RW; Schnabel U
    J Environ Manage; 2006 Jul; 80(2):132-47. PubMed ID: 16413097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil stabilisation using AMD sludge, compost and lignite: TCLP leachability and continuous acid leaching.
    Tsang DC; Olds WE; Weber PA; Yip AC
    Chemosphere; 2013 Nov; 93(11):2839-47. PubMed ID: 24144464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.
    Kirchmann H; Börjesson G; Kätterer T; Cohen Y
    Ambio; 2017 Mar; 46(2):143-154. PubMed ID: 27651268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical-specific health consultation for chromated copper arsenate chemical mixture: port of Djibouti.
    Chou S; Colman J; Tylenda C; De Rosa C
    Toxicol Ind Health; 2007 May; 23(4):183-208. PubMed ID: 18429380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.
    Tanigaki N; Ishida Y; Osada M
    Waste Manag; 2015 Mar; 37():137-46. PubMed ID: 25182227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating remediation and resource recovery: On the economic conditions of landfill mining.
    Frändegård P; Krook J; Svensson N
    Waste Manag; 2015 Aug; 42():137-47. PubMed ID: 25962826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Framework for determining optimal strategy for sustainable remediation of contaminated sediment: A case study in Northern Taiwan.
    Zheng ZJ; Lin MY; Chiueh PT; Lo SL
    Sci Total Environ; 2019 Mar; 654():822-831. PubMed ID: 30448672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.
    Sparrevik M; Eek E; Grini RS
    Environ Technol; 2009 Jul; 30(8):831-40. PubMed ID: 19705667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cost-benefit analysis of landfill mining and material recycling in China.
    Zhou C; Gong Z; Hu J; Cao A; Liang H
    Waste Manag; 2015 Jan; 35():191-8. PubMed ID: 25453315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.
    del Carmen Hernández-Soriano M; Peña A; Mingorance MD
    J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.