BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28668769)

  • 21. Gut-associated microbes of Drosophila melanogaster.
    Broderick NA; Lemaitre B
    Gut Microbes; 2012; 3(4):307-21. PubMed ID: 22572876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial Adaptation to the Host's Diet Is a Key Evolutionary Force Shaping Drosophila-Lactobacillus Symbiosis.
    Martino ME; Joncour P; Leenay R; Gervais H; Shah M; Hughes S; Gillet B; Beisel C; Leulier F
    Cell Host Microbe; 2018 Jul; 24(1):109-119.e6. PubMed ID: 30008290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drosophila Genotype Influences Commensal Bacterial Levels.
    Early AM; Shanmugarajah N; Buchon N; Clark AG
    PLoS One; 2017; 12(1):e0170332. PubMed ID: 28095502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in
    Erkosar B; Kolly S; van der Meer JR; Kawecki TJ
    mBio; 2017 Oct; 8(5):. PubMed ID: 29066546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Symbiotic bacteria, which modify reproduction processes of Drosophila melanogaster].
    Belousov AO; Kozeretskaia IA
    Mikrobiol Z; 2011; 73(2):43-52. PubMed ID: 21598659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbiomes as modulators of Drosophila melanogaster homeostasis and disease.
    Lesperance DN; Broderick NA
    Curr Opin Insect Sci; 2020 Jun; 39():84-90. PubMed ID: 32339931
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Téfit MA; Leulier F
    J Exp Biol; 2017 Mar; 220(Pt 5):900-907. PubMed ID: 28062579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gut microbes predominantly act as living beneficial partners rather than raw nutrients.
    da Silva Soares NF; Quagliariello A; Yigitturk S; Martino ME
    Sci Rep; 2023 Jul; 13(1):11981. PubMed ID: 37488173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Guest editorial: Microbiota: Microbiota and animal ecology, evolution and physiology: back to the future.
    Martino ME; Leulier F
    Curr Opin Microbiol; 2017 Aug; 38():viii-x. PubMed ID: 29173838
    [No Abstract]   [Full Text] [Related]  

  • 30. The Host as the Driver of the Microbiota in the Gut and External Environment of Drosophila melanogaster.
    Wong AC; Luo Y; Jing X; Franzenburg S; Bost A; Douglas AE
    Appl Environ Microbiol; 2015 Sep; 81(18):6232-40. PubMed ID: 26150460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A gut microbial factor modulates locomotor behaviour in Drosophila.
    Schretter CE; Vielmetter J; Bartos I; Marka Z; Marka S; Argade S; Mazmanian SK
    Nature; 2018 Nov; 563(7731):402-406. PubMed ID: 30356215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster.
    Adair KL; Wilson M; Bost A; Douglas AE
    ISME J; 2018 Apr; 12(4):959-972. PubMed ID: 29358735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia-mediated antiviral protection.
    Ye YH; Seleznev A; Flores HA; Woolfit M; McGraw EA
    J Invertebr Pathol; 2017 Feb; 143():18-25. PubMed ID: 27871813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enterococci Mediate the Oviposition Preference of Drosophila melanogaster through Sucrose Catabolism.
    Liu W; Zhang K; Li Y; Su W; Hu K; Jin S
    Sci Rep; 2017 Oct; 7(1):13420. PubMed ID: 29044155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype.
    Chaston JM; Dobson AJ; Newell PD; Douglas AE
    Appl Environ Microbiol; 2016 Jan; 82(2):671-9. PubMed ID: 26567306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of commensal microbiota on immune cell subsets and inflammatory responses.
    Chinen T; Rudensky AY
    Immunol Rev; 2012 Jan; 245(1):45-55. PubMed ID: 22168413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila.
    Whon TW; Shin NR; Jung MJ; Hyun DW; Kim HS; Kim PS; Bae JW
    Antioxid Redox Signal; 2017 Dec; 27(16):1361-1380. PubMed ID: 28462587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Influence of Drosophila melanogaster genotype on biological effects of endocymbiont Wolbachia (stamm wMelPop)].
    Voronin DA; Bochernikov AM; Baricheva EM; Zakharov IK; Kiseleva EV
    Tsitologiia; 2009; 51(4):335-45. PubMed ID: 19505052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of co-occurring Wolbachia and Spiroplasma endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria.
    Shokal U; Yadav S; Atri J; Accetta J; Kenney E; Banks K; Katakam A; Jaenike J; Eleftherianos I
    BMC Microbiol; 2016 Feb; 16():16. PubMed ID: 26862076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wolbachia effects in Drosophila melanogaster: in search of fitness benefits.
    Harcombe W; Hoffmann AA
    J Invertebr Pathol; 2004 Sep; 87(1):45-50. PubMed ID: 15491598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.