BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28668888)

  • 1. Efficacy of Combination Therapy with MET and VEGF Inhibitors for MET-overexpressing Glioblastoma.
    Okuda T; Tasaki T; Nakata S; Yamashita K; Yoshioka H; Izumoto S; Kato A; Fujita M
    Anticancer Res; 2017 Jul; 37(7):3871-3876. PubMed ID: 28668888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models.
    Piao Y; Park SY; Henry V; Smith BD; Tiao N; Flynn DL; de Groot JF
    Neuro Oncol; 2016 Sep; 18(9):1230-41. PubMed ID: 26965451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatase and tensin homolog reconstruction and vascular endothelial growth factor knockdown synergistically inhibit the growth of glioblastoma.
    Chen H; Shen X; Guo C; Zhu H; Zhou L; Zhu Y; Wang H; Zheng Y; Huang L
    Cancer Biother Radiopharm; 2010 Dec; 25(6):713-21. PubMed ID: 21204766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex.
    Lu KV; Chang JP; Parachoniak CA; Pandika MM; Aghi MK; Meyronet D; Isachenko N; Fouse SD; Phillips JJ; Cheresh DA; Park M; Bergers G
    Cancer Cell; 2012 Jul; 22(1):21-35. PubMed ID: 22789536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.
    Johnson J; Ascierto ML; Mittal S; Newsome D; Kang L; Briggs M; Tanner K; Marincola FM; Berens ME; Vande Woude GF; Xie Q
    J Transl Med; 2015 Sep; 13():306. PubMed ID: 26381735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles.
    Jin J; Bae KH; Yang H; Lee SJ; Kim H; Kim Y; Joo KM; Seo SW; Park TG; Nam DH
    Bioconjug Chem; 2011 Dec; 22(12):2568-72. PubMed ID: 22070554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD44 expression in the tumor periphery predicts the responsiveness to bevacizumab in the treatment of recurrent glioblastoma.
    Nishikawa M; Inoue A; Ohnishi T; Yano H; Kanemura Y; Kohno S; Ohue S; Ozaki S; Matsumoto S; Suehiro S; Nakamura Y; Shigekawa S; Watanabe H; Kitazawa R; Tanaka J; Kunieda T
    Cancer Med; 2021 Mar; 10(6):2013-2025. PubMed ID: 33543833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolinderalactone suppresses human glioblastoma growth and angiogenic activity in 3D microfluidic chip and in vivo mouse models.
    Park JH; Kim MJ; Kim WJ; Kwon KD; Ha KT; Choi BT; Lee SY; Shin HK
    Cancer Lett; 2020 May; 478():71-81. PubMed ID: 32173479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of p53 mutations in proliferating vascular cells in glioblastoma multiforme.
    Kawasoe T; Takeshima H; Yamashita S; Mizuguchi S; Fukushima T; Yokogami K; Yamasaki K
    J Neurosurg; 2015 Feb; 122(2):317-23. PubMed ID: 25415071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epithelial membrane protein-2 (EMP2) promotes angiogenesis in glioblastoma multiforme.
    Qin Y; Takahashi M; Sheets K; Soto H; Tsui J; Pelargos P; Antonios JP; Kasahara N; Yang I; Prins RM; Braun J; Gordon LK; Wadehra M
    J Neurooncol; 2017 Aug; 134(1):29-40. PubMed ID: 28597184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance.
    Chandra A; Jahangiri A; Chen W; Nguyen AT; Yagnik G; Pereira MP; Jain S; Garcia JH; Shah SS; Wadhwa H; Joshi RS; Weiss J; Wolf KJ; Lin JG; Müller S; Rick JW; Diaz AA; Gilbert LA; Kumar S; Aghi MK
    Cancer Res; 2020 Apr; 80(7):1498-1511. PubMed ID: 32041837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma.
    Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY
    Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference targeting hypoxia-inducible factor 1α via a novel multifunctional surfactant attenuates glioma growth in an intracranial mouse model.
    Gillespie DL; Aguirre MT; Ravichandran S; Leishman LL; Berrondo C; Gamboa JT; Wang L; King R; Wang X; Tan M; Malamas A; Lu ZR; Jensen RL
    J Neurosurg; 2015 Feb; 122(2):331-41. PubMed ID: 25423275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High expression of a novel splicing variant of VEGF, L-VEGF144 in glioblastoma multiforme is associated with a poorer prognosis in bevacizumab treatment.
    Cheng WY; Shen CC; Chiao MT; Liang YJ; Mao TF; Liu BS; Chen JP
    J Neurooncol; 2018 Oct; 140(1):37-47. PubMed ID: 29909500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy.
    Xu H; Rahimpour S; Nesvick CL; Zhang X; Ma J; Zhang M; Zhang G; Wang L; Yang C; Hong CS; Germanwala AV; Elder JB; Ray-Chaudhury A; Yao Y; Gilbert MR; Lonser RR; Heiss JD; Brady RO; Mao Y; Qin J; Zhuang Z
    Oncotarget; 2015 May; 6(14):11882-93. PubMed ID: 25957416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gain-of-function GLI1 transcription factor TGLI1 enhances expression of VEGF-C and TEM7 to promote glioblastoma angiogenesis.
    Carpenter RL; Paw I; Zhu H; Sirkisoon S; Xing F; Watabe K; Debinski W; Lo HW
    Oncotarget; 2015 Sep; 6(26):22653-65. PubMed ID: 26093087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab.
    Höbel S; Koburger I; John M; Czubayko F; Hadwiger P; Vornlocher HP; Aigner A
    J Gene Med; 2010 Mar; 12(3):287-300. PubMed ID: 20052738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual inhibition of PFKFB3 and VEGF normalizes tumor vasculature, reduces lactate production, and improves chemotherapy in glioblastoma: insights from protein expression profiling and MRI.
    Zhang J; Xue W; Xu K; Yi L; Guo Y; Xie T; Tong H; Zhou B; Wang S; Li Q; Liu H; Chen X; Fang J; Zhang W
    Theranostics; 2020; 10(16):7245-7259. PubMed ID: 32641990
    [No Abstract]   [Full Text] [Related]  

  • 19. 18F-FET microPET and microMRI for anti-VEGF and anti-PlGF response assessment in an orthotopic murine model of human glioblastoma.
    Nedergaard MK; Michaelsen SR; Urup T; Broholm H; El Ali H; Poulsen HS; Stockhausen MT; Kjaer A; Lassen U
    PLoS One; 2015; 10(2):e0115315. PubMed ID: 25680186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SDF-1 Blockade Enhances Anti-VEGF Therapy of Glioblastoma and Can Be Monitored by MRI.
    Deng L; Stafford JH; Liu SC; Chernikova SB; Merchant M; Recht L; Martin Brown J
    Neoplasia; 2017 Jan; 19(1):1-7. PubMed ID: 27940247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.