BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 28668991)

  • 1. Effect of metalimnetic gradient on phytoplankton and zooplankton (Rotifera, Crustacea) communities in different trophic conditions.
    Karpowicz M; Ejsmont-Karabin J
    Environ Monit Assess; 2017 Aug; 189(8):367. PubMed ID: 28668991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of plankton indices to lake trophic conditions.
    Ochocka A; Pasztaleniec A
    Environ Monit Assess; 2016 Nov; 188(11):622. PubMed ID: 27752916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia.
    Noskov YA; Manasypov RM; Ermolaeva NI; Antonets DV; Shirokova LS; Pokrovsky OS
    Sci Total Environ; 2024 Apr; 922():171284. PubMed ID: 38432389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial heterogeneity of chemistry of the Small Aral Sea and the Syr Darya River and its impact on plankton communities.
    Klimaszyk P; Kuczyńska-Kippen N; Szeląg-Wasielewska E; Marszelewski W; Borowiak D; Niedzielski P; Nowiński K; Kurmanbayev R; Baikenzheyeva A; Rzymski P
    Chemosphere; 2022 Nov; 307(Pt 2):135788. PubMed ID: 35872058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the fish-
    Rakowski CJ; Leibold MA
    PeerJ; 2022; 10():e14094. PubMed ID: 36193425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam).
    Hoang HTT; Duong TT; Nguyen KT; Le QTP; Luu MTN; Trinh DA; Le AH; Ho CT; Dang KD; Némery J; Orange D; Klein J
    Environ Monit Assess; 2018 Jan; 190(2):67. PubMed ID: 29308572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warming affects crustacean grazing pressure on phytoplankton by altering the vertical distribution in a stratified lake.
    Wang L; Shen H; Wu Z; Yu Z; Li Y; Su H; Zheng W; Chen J; Xie P
    Sci Total Environ; 2020 Sep; 734():139195. PubMed ID: 32470657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs.
    Lampert W
    BMC Biol; 2005 Apr; 3():10. PubMed ID: 15813974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrients mediate the effects of temperature on methylmercury concentrations in freshwater zooplankton.
    Jordan MP; Stewart AR; Eagles-Smith CA; Strecker AL
    Sci Total Environ; 2019 Jun; 667():601-612. PubMed ID: 30833259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food web de-synchronization in England's largest lake: an assessment based on multiple phenological metrics.
    Thackeray SJ; Henrys PA; Feuchtmayr H; Jones ID; Maberly SC; Winfield IJ
    Glob Chang Biol; 2013 Dec; 19(12):3568-80. PubMed ID: 23868351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia.
    Hampton SE; Gray DK; Izmest'eva LR; Moore MV; Ozersky T
    PLoS One; 2014; 9(2):e88920. PubMed ID: 24586441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the effects of aquaculture on the freshwater lake from the perspective of plankton communities: The diversity, co-occurrence patterns and their underlying mechanisms.
    Xu H; Zhao D; Zeng J; Mao Z; Gu X; Wu QL
    Environ Pollut; 2022 Sep; 309():119741. PubMed ID: 35839971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.
    Shuryak I
    J Environ Radioact; 2018 Dec; 192():14-25. PubMed ID: 29883873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting phytoplankton-zooplankton distributions observed through autonomous platforms, in-situ optical sensors and discrete sampling.
    Fragoso GM; Davies EJ; Fossum TO; Ullgren JE; Majaneva S; Aberle N; Ludvigsen M; Johnsen G
    PLoS One; 2022; 17(9):e0273874. PubMed ID: 36067176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structural Characteristics of Zooplankton and Phytoplankton Communities and Its Relationship with Environmental Factors in Different Regions of Nanhu Lake in Jiaxing City].
    Wang YW; Li YH; Zhang B; Guo YY; Chen JY; Han S
    Huan Jing Ke Xue; 2022 Jun; 43(6):3106-3117. PubMed ID: 35686780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictable shifts in diversity and ecosystem function in phytoplankton and zooplankton communities along thermocline stratification intensity continua.
    Wang L; Liu J; Bao Z; Ma X; Shen H; Chen J; Xie P
    Sci Total Environ; 2024 Feb; 912():168981. PubMed ID: 38042191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes.
    Havens KE
    ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of thermocline structure and the deep chlorophyll maximum feature in multiple stratified lakes related to environmental drivers.
    Li J; Li Y; Liu M; Yu Z; Song D; Jeppesen E; Zhou Q
    Sci Total Environ; 2022 Dec; 851(Pt 2):158431. PubMed ID: 36055493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.