BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2866935)

  • 21. Spectroscopic probes of Escherichia coli glutamine synthetase. Rare earth ions by difference absorption.
    Wedler FC; D'Aurora V
    Biochim Biophys Acta; 1974 Dec; 371(2):432-41. PubMed ID: 4154782
    [No Abstract]   [Full Text] [Related]  

  • 22. Nuclear magnetic resonance study of the complexes of manganese(II) and fully adenylated glutamine synthetase (Escherichia coli W). Frequency, temperature, and substrate dependence of water proton relaxation rates.
    Villafranca JJ; Wedler FC
    Biochemistry; 1974 Jul; 13(16):3286-91. PubMed ID: 4152181
    [No Abstract]   [Full Text] [Related]  

  • 23. A model for oxidative modification of glutamine synthetase, based on crystal structures of mutant H269N and the oxidized enzyme.
    Liaw SH; Villafranca JJ; Eisenberg D
    Biochemistry; 1993 Aug; 32(31):7999-8003. PubMed ID: 8102250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic and mutagenic studies of the role of the active site residues Asp-50 and Glu-327 of Escherichia coli glutamine synthetase.
    Alibhai M; Villafranca JJ
    Biochemistry; 1994 Jan; 33(3):682-6. PubMed ID: 7904829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding.
    Kelly BS; Antholine WE; Griffith OW
    J Biol Chem; 2002 Jan; 277(1):50-8. PubMed ID: 11675389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the mechanism of phosphinothricin inactivation of Escherichia coli glutamine synthetase using rapid quench kinetic technique.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Jun; 30(25):6135-41. PubMed ID: 1676298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial proximity of two divalent metal ions at the active site of S-adenosylmethionine synthetase.
    Markham GD
    J Biol Chem; 1981 Feb; 256(4):1903-9. PubMed ID: 6257692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutamine synthetase: biophysical studies of structure-function-control relationships.
    Villafranca JJ; Balakrishnan MS
    Int J Biochem; 1979; 10(7):565-71. PubMed ID: 38153
    [No Abstract]   [Full Text] [Related]  

  • 29. Adenosine 5'-triphosphate analogues as structural probes for Escherichia coli glutamine synthetase.
    Maurizi MR; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):131-40. PubMed ID: 2869780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction among substrates, inhibitors and Mn2+ bound to glutamine synthetase as studied by NMR relaxation rate measurements.
    Eads CD; Villafranca JJ
    Arch Biochem Biophys; 1987 Feb; 252(2):382-7. PubMed ID: 2880564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of metal ions and adenylylation state on the internal thermodynamics of phosphoryl transfer in the Escherichia coli glutamine synthetase reaction.
    Abell LM; Villafranca JJ
    Biochemistry; 1991 Feb; 30(5):1413-8. PubMed ID: 1671336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed mutagenesis of Glu-297 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine.
    Clemente MT; Márquez AJ
    Plant Mol Biol; 1999 Jul; 40(5):835-45. PubMed ID: 10487218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mn2+ and substrate interactions with glutamine synthetase from Escherichia coli.
    Hunt JB; Ginsburg A
    J Biol Chem; 1980 Jan; 255(2):590-4. PubMed ID: 6101329
    [No Abstract]   [Full Text] [Related]  

  • 35. Glutamine synthetase from ovine brain is a manganese(II) enzyme.
    Wedler FC; Denman RB; Roby WG
    Biochemistry; 1982 Dec; 21(25):6389-96. PubMed ID: 6129892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of substrates with glutamine synthetase after limited proteolysis.
    Monroe DM; Noyes CM; Lundblad RL; Kingdon HS; Griffith MJ
    Biochemistry; 1984 Sep; 23(20):4565-72. PubMed ID: 6149764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent probes for measuring the binding constants and distances between the metal ions bound to Escherichia coli glutamine synthetase.
    Lin WY; Eads CD; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3421-6. PubMed ID: 1672822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies.
    Zolkiewski M; Ginsburg A
    Biochemistry; 1992 Dec; 31(48):11991-2000. PubMed ID: 1360813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes.
    Liaw SH; Eisenberg D
    Biochemistry; 1994 Jan; 33(3):675-81. PubMed ID: 7904828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active site ligand stabilization of quaternary structures of glutamine synthetase from Escherichia coli.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Jun; 257(12):7246-51. PubMed ID: 6123504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.