BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 28669720)

  • 1. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.
    Zhu L; Seror J; Day AJ; Kampf N; Klein J
    Acta Biomater; 2017 Sep; 59():283-292. PubMed ID: 28669720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Hyaluronic Acid in Cartilage Boundary Lubrication.
    Lin W; Liu Z; Kampf N; Klein J
    Cells; 2020 Jul; 9(7):. PubMed ID: 32630823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Hyaluronan Molecular Weight on the Lubrication of Cartilage-Emulating Boundary Layers.
    Liu Z; Lin W; Fan Y; Kampf N; Wang Y; Klein J
    Biomacromolecules; 2020 Oct; 21(10):4345-4354. PubMed ID: 32931261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions.
    Sorkin R; Kampf N; Zhu L; Klein J
    Soft Matter; 2016 Mar; 12(10):2773-84. PubMed ID: 26861851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary Lubrication, Hemifusion, and Self-Healing of Binary Saturated and Monounsaturated Phosphatidylcholine Mixtures ⧫.
    Cao Y; Kampf N; Klein J
    Langmuir; 2019 Dec; 35(48):15459-15468. PubMed ID: 31296001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins of extreme boundary lubrication by phosphatidylcholine liposomes.
    Sorkin R; Kampf N; Dror Y; Shimoni E; Klein J
    Biomaterials; 2013 Jul; 34(22):5465-75. PubMed ID: 23623226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration Lubrication in Biomedical Applications: From Cartilage to Hydrogels.
    Lin W; Klein J
    Acc Mater Res; 2022 Feb; 3(2):213-223. PubMed ID: 35243350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus.
    Yu J; Banquy X; Greene GW; Lowrey DD; Israelachvili JN
    Langmuir; 2012 Jan; 28(4):2244-50. PubMed ID: 22148857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-hyaluronan synergy strongly reduces intrasynovial tissue boundary friction.
    Lin W; Mashiah R; Seror J; Kadar A; Dolkart O; Pritsch T; Goldberg R; Klein J
    Acta Biomater; 2019 Jan; 83():314-321. PubMed ID: 30423432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular synergy in the boundary lubrication of synovial joints.
    Seror J; Zhu L; Goldberg R; Day AJ; Klein J
    Nat Commun; 2015 Mar; 6():6497. PubMed ID: 25754223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan--aggrecan complexes.
    Seror J; Merkher Y; Kampf N; Collinson L; Day AJ; Maroudas A; Klein J
    Biomacromolecules; 2011 Oct; 12(10):3432-43. PubMed ID: 21823600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposomes as lubricants: beyond drug delivery.
    Goldberg R; Klein J
    Chem Phys Lipids; 2012 May; 165(4):374-81. PubMed ID: 22119851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and shear interactions between hyaluronan-aggrecan complexes mimicking possible boundary lubricants in articular cartilage in synovial joints.
    Seror J; Merkher Y; Kampf N; Collinson L; Day AJ; Maroudas A; Klein J
    Biomacromolecules; 2012 Nov; 13(11):3823-32. PubMed ID: 23074968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposomes act as effective biolubricants for friction reduction in human synovial joints.
    Sivan S; Schroeder A; Verberne G; Merkher Y; Diminsky D; Priev A; Maroudas A; Halperin G; Nitzan D; Etsion I; Barenholz Y
    Langmuir; 2010 Jan; 26(2):1107-16. PubMed ID: 20014818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal and Frictional Interactions between Liposome-Bearing Biomacromolecular Bilayers.
    Gaisinskaya-Kipnis A; Klein J
    Biomacromolecules; 2016 Aug; 17(8):2591-602. PubMed ID: 27409248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly-phosphocholination of liposomes leads to highly-extended retention time in mice joints.
    Lin W; Goldberg R; Klein J
    J Mater Chem B; 2022 Apr; 10(15):2820-2827. PubMed ID: 35099493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between adsorbed hydrogenated soy phosphatidylcholine (HSPC) vesicles at physiologically high pressures and salt concentrations.
    Goldberg R; Schroeder A; Barenholz Y; Klein J
    Biophys J; 2011 May; 100(10):2403-11. PubMed ID: 21575574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure.
    Ludwig TE; Hunter MM; Schmidt TA
    BMC Musculoskelet Disord; 2015 Dec; 16():386. PubMed ID: 26666513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glucosamine sulfate on surface interactions and lubrication by hydrogenated soy phosphatidylcholine (HSPC) liposomes.
    Gaisinskaya-Kipnis A; Jahn S; Goldberg R; Klein J
    Biomacromolecules; 2014 Nov; 15(11):4178-86. PubMed ID: 25244425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical stability and lubrication by phosphatidylcholine boundary layers in the vesicular and in the extended lamellar phases.
    Sorkin R; Dror Y; Kampf N; Klein J
    Langmuir; 2014 May; 30(17):5005-14. PubMed ID: 24708462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.