These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28669798)

  • 1. The pars tuberalis: The site of the circannual clock in mammals?
    Wood S; Loudon A
    Gen Comp Endocrinol; 2018 Mar; 258():222-235. PubMed ID: 28669798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms.
    Korf HW
    Gen Comp Endocrinol; 2018 Mar; 258():236-243. PubMed ID: 28511899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster.
    Sáenz de Miera C; Sage-Ciocca D; Simonneaux V; Pévet P; Monecke S
    J Biol Rhythms; 2018 Jun; 33(3):302-317. PubMed ID: 29618281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary.
    Wood S; Loudon A
    J Endocrinol; 2014 Aug; 222(2):R39-59. PubMed ID: 24891434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary Switching of Calendar Cells in the Pituitary Defines the Phase of the Circannual Cycle in Mammals.
    Wood SH; Christian HC; Miedzinska K; Saer BR; Johnson M; Paton B; Yu L; McNeilly J; Davis JR; McNeilly AS; Burt DW; Loudon AS
    Curr Biol; 2015 Oct; 25(20):2651-62. PubMed ID: 26412130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clock genes in calendar cells as the basis of annual timekeeping in mammals--a unifying hypothesis.
    Lincoln GA; Andersson H; Loudon A
    J Endocrinol; 2003 Oct; 179(1):1-13. PubMed ID: 14529560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones.
    Dardente H
    J Neuroendocrinol; 2012 Feb; 24(2):249-66. PubMed ID: 22070540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A circannual clock drives expression of genes central for seasonal reproduction.
    Sáenz de Miera C; Monecke S; Bartzen-Sprauer J; Laran-Chich MP; Pévet P; Hazlerigg DG; Simonneaux V
    Curr Biol; 2014 Jul; 24(13):1500-6. PubMed ID: 24980500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis.
    Lincoln GA; Andersson H; Hazlerigg D
    J Neuroendocrinol; 2003 Apr; 15(4):390-7. PubMed ID: 12622839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin entrainment of circannual rhythms.
    Lincoln GA
    Chronobiol Int; 2006; 23(1-2):301-6. PubMed ID: 16687303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discontinuity in the molecular neuroendocrine response to increasing daylengths in Ile-de-France ewes: Is transient Dio2 induction a key feature of circannual timing?
    Dardente H; Lomet D; Chesneau D; Pellicer-Rubio MT; Hazlerigg D
    J Neuroendocrinol; 2019 Aug; 31(8):e12775. PubMed ID: 31340078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cells co-expressing luteinising hormone and thyroid-stimulating hormone are present in the ovine pituitary pars distalis but not the pars tuberalis: implications for the control of endogenous circannual rhythms of prolactin.
    Hodson DJ; Townsend J; Tortonese DJ
    Neuroendocrinology; 2013; 97(4):355-62. PubMed ID: 23548370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland.
    Sáenz de Miera C; Bothorel B; Jaeger C; Simonneaux V; Hazlerigg D
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8408-8413. PubMed ID: 28716942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals.
    Helfer G; Barrett P; Morgan PJ
    J Neuroendocrinol; 2019 Mar; 31(3):e12680. PubMed ID: 30585661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photorefractoriness in mammals: dissociating a seasonal timer from the circadian-based photoperiod response.
    Lincoln GA; Johnston JD; Andersson H; Wagner G; Hazlerigg DG
    Endocrinology; 2005 Sep; 146(9):3782-90. PubMed ID: 15919753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circannual prolactin rhythms: calendar-like timer revealed in the pituitary gland.
    Duncan MJ
    Trends Endocrinol Metab; 2007 Sep; 18(7):259-60. PubMed ID: 17689257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid hormone and seasonal regulation of reproduction.
    Yoshimura T
    Front Neuroendocrinol; 2013 Aug; 34(3):157-66. PubMed ID: 23660390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal organization of pineal melatonin signaling in mammals.
    Gorman MR
    Mol Cell Endocrinol; 2020 Mar; 503():110687. PubMed ID: 31866317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone and hypothalamic stem cells in seasonal functions.
    Dardente H; Migaud M
    Vitam Horm; 2021; 116():91-131. PubMed ID: 33752829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular switch for photoperiod responsiveness in mammals.
    Dardente H; Wyse CA; Birnie MJ; Dupré SM; Loudon AS; Lincoln GA; Hazlerigg DG
    Curr Biol; 2010 Dec; 20(24):2193-8. PubMed ID: 21129971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.