These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28669948)

  • 1. [Neural dynamics of cognitive flexibility: spatiotemporal analysis of event-related potentials].
    Cao Y; Zhou S; Wang Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 Jun; 37(6):755-760. PubMed ID: 28669948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connectivity and local activity within the fronto-posterior brain network in schizophrenia.
    Sharma A; Weisbrod M; Bender S
    Suppl Clin Neurophysiol; 2013; 62():181-96. PubMed ID: 24053040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of task probability on context processing: spatiotemporal analysis of event-related potential].
    Huang J; Zhou S; Zhao Y; Zhao Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Apr; 32(4):523-6. PubMed ID: 22543134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-switching.
    Swainson R; Cunnington R; Jackson GM; Rorden C; Peters AM; Morris PG; Jackson SR
    J Cogn Neurosci; 2003 Aug; 15(6):785-99. PubMed ID: 14511532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of verbal working memory load: spatiotemporal analysis of event-related potentials].
    Hu W; Zhou S; Wang Y; Huang D; Cao Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Aug; 35(9):1268-71. PubMed ID: 26403736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spatiotemporal analysis of event-related potentials during mind wandering].
    Liu J; Zhou S
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Aug; 31(8):1330-3. PubMed ID: 21868316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding light on gray(ing) areas: Connectivity and task switching dynamics in aging.
    Baniqued PL; Low KA; Fletcher MA; Gratton G; Fabiani M
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28323332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporally and functionally distinct large-scale brain network dynamics supporting task switching.
    Mitsuhashi T; Sonoda M; Firestone E; Sakakura K; Jeong JW; Luat AF; Sood S; Asano E
    Neuroimage; 2022 Jul; 254():119126. PubMed ID: 35331870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switch-Independent Task Representations in Frontal and Parietal Cortex.
    Loose LS; Wisniewski D; Rusconi M; Goschke T; Haynes JD
    J Neurosci; 2017 Aug; 37(33):8033-8042. PubMed ID: 28729441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spatio-temporal analysis of recognition-related event-related brain potentials.
    Johnson R; Kreiter K; Russo B; Zhu J
    Int J Psychophysiol; 1998 Jun; 29(1):83-104. PubMed ID: 9641251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological correlates of residual switch costs.
    Gajewski PD; Kleinsorge T; Falkenstein M
    Cortex; 2010 Oct; 46(9):1138-48. PubMed ID: 19717147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task switching: a high-density electrical mapping study.
    Wylie GR; Javitt DC; Foxe JJ
    Neuroimage; 2003 Dec; 20(4):2322-42. PubMed ID: 14683733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal commonalities of fronto-parietal activation in attentional orienting triggered by supraliminal and subliminal gaze cues: An event-related potential study.
    Uono S; Sato W; Sawada R; Kochiyama T; Toichi M
    Biol Psychol; 2018 Jul; 136():29-38. PubMed ID: 29733867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.
    Cutini S; Scatturin P; Menon E; Bisiacchi PS; Gamberini L; Zorzi M; Dell'Acqua R
    Neuroimage; 2008 Aug; 42(2):945-55. PubMed ID: 18586525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.