BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28670353)

  • 1. Effects of living cells on the bioink printability during laser printing.
    Zhang Z; Xu C; Xiong R; Chrisey DB; Huang Y
    Biomicrofluidics; 2017 May; 11(3):034120. PubMed ID: 28670353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric Study of Jet/Droplet Formation Process during LIFT Printing of Living Cell-Laden Bioink.
    Kryou C; Theodorakos I; Karakaidos P; Klinakis A; Hatziapostolou A; Zergioti I
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Resolved Imaging Study of Jetting Dynamics during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Mei R; Huang Y; Chrisey DB
    Langmuir; 2015 Jun; 31(23):6447-56. PubMed ID: 26011320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Impingement Types and Printing Quality during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Corr DT; Huang Y
    Langmuir; 2016 Mar; 32(12):3004-14. PubMed ID: 26934283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of gelatin as an effective energy absorbing layer for laser bioprinting.
    Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y
    Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink.
    Xu C; Zhang M; Huang Y; Ogale A; Fu J; Markwald RR
    Langmuir; 2014 Aug; 30(30):9130-8. PubMed ID: 25005170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of single cell femtosecond laser printing.
    Zhang J; Frank C; Byers P; Djordjevic S; Docheva D; Clausen-Schaumann H; Sudhop S; Huber HP
    Biomed Opt Express; 2023 May; 14(5):2276-2292. PubMed ID: 37206114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling Droplet Impact Velocity and Droplet Volume: Key Factors to Achieving High Cell Viability in Sub-Nanoliter Droplet-based Bioprinting.
    Ng WL; Huang X; Shkolnikov V; Goh GL; Suntornnond R; Yeong WY
    Int J Bioprint; 2022; 8(1):424. PubMed ID: 35187273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High density cell seeding affects the rheology and printability of collagen bioinks.
    Diamantides N; Dugopolski C; Blahut E; Kennedy S; Bonassar LJ
    Biofabrication; 2019 Aug; 11(4):045016. PubMed ID: 31342915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and Rapid Bioink Jet Printing for Multiscale Cell Adhesion Islands.
    Mecozzi L; Gennari O; Rega R; Battista L; Ferraro P; Grilli S
    Macromol Biosci; 2017 Mar; 17(3):. PubMed ID: 27759335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting.
    Kiyotake EA; Douglas AW; Thomas EE; Nimmo SL; Detamore MS
    Acta Biomater; 2019 Sep; 95():176-187. PubMed ID: 30669003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration.
    Hafezi F; Shorter S; Tabriz AG; Hurt A; Elmes V; Boateng J; Douroumis D
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32545741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet bioprinting of acellular and cell-laden structures at high-resolutions.
    Kunwar P; Aryal U; Poudel A; Fougnier D; Geffert ZJ; Xie R; Li Z; Soman P
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.