BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28670743)

  • 41. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content.
    Rofkar JR; Dwyer DF
    Int J Phytoremediation; 2013; 15(6):561-72. PubMed ID: 23819297
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recovering from trampling: The role of dauciform roots to functional traits response of
    Fan R; Liu W; Jiang S; Huang Y; Ji W
    Ecol Evol; 2023 Nov; 13(11):e10709. PubMed ID: 37928191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High nitrogen : phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges.
    Güsewell S
    New Phytol; 2005 May; 166(2):537-50. PubMed ID: 15819916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply.
    Vardien W; Steenkamp ET; Valentine AJ
    J Plant Physiol; 2016 Feb; 191():73-81. PubMed ID: 26720212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genotypic variation in phosphorus acquisition from sparingly soluble P sources is related to root morphology and root exudates in Brassica napus.
    Zhang H; Huang Y; Ye X; Xu F
    Sci China Life Sci; 2011 Dec; 54(12):1134-42. PubMed ID: 22227906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plant adaptations to severely phosphorus-impoverished soils.
    Lambers H; Martinoia E; Renton M
    Curr Opin Plant Biol; 2015 Jun; 25():23-31. PubMed ID: 25912783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review.
    Jin J; Tang C; Sale P
    Ann Bot; 2015 Nov; 116(6):987-99. PubMed ID: 26113632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea.
    Robroek BJ; Adema EB; Venterink HO; Leonardson L; Wassen MJ
    Sci Total Environ; 2009 Mar; 407(7):2342-8. PubMed ID: 19101022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.
    Wang X; Tang C; Severi J; Butterly CR; Baldock JA
    New Phytol; 2016 Aug; 211(3):864-73. PubMed ID: 27101777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cluster roots of Embothrium coccineum modify their metabolism and show differential gene expression in response to phosphorus supply.
    Delgado M; Henríquez-Castillo C; Zuñiga-Feest A; Sepúlveda F; Hasbún R; Hanna P; Reyes-Díaz M; Bertin-Benavides A
    Plant Physiol Biochem; 2021 Apr; 161():191-199. PubMed ID: 33621863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy.
    Michalet S; Rohr J; Warshan D; Bardon C; Roggy JC; Domenach AM; Czarnes S; Pommier T; Combourieu B; Guillaumaud N; Bellvert F; Comte G; Poly F
    Plant Physiol Biochem; 2013 Nov; 72():169-77. PubMed ID: 23727287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Availability of organic and inorganic phosphorus compounds as phosphorus sources for Carex species.
    Pérez Corona ME; VAN DER Klundert I; Verhoeven JTA
    New Phytol; 1996 Jun; 133(2):225-231. PubMed ID: 29681074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Foraging for space and avoidance of physical obstructions by plant roots: a comparative study of grasses from contrasting habitats.
    Semchenko M; Zobel K; Heinemeyer A; Hutchings MJ
    New Phytol; 2008; 179(4):1162-1170. PubMed ID: 18627492
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants.
    Pantigoso HA; Yuan J; He Y; Guo Q; Vollmer C; Vivanco JM
    PLoS One; 2020; 15(6):e0234216. PubMed ID: 32492072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.).
    Tang H; Shen J; Zhang F; Rengel Z
    Sci China Life Sci; 2013 Apr; 56(4):313-23. PubMed ID: 23504274
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate.
    Richardson AE; Hadobas PA; Hayes JE
    Plant J; 2001 Mar; 25(6):641-9. PubMed ID: 11319031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutrient supply influences root exudation and development.
    Le Marié C; Blossfeld S; Süssmilch S; Kuhn AJ
    Commun Agric Appl Biol Sci; 2011; 76(2):19-21. PubMed ID: 21404926
    [No Abstract]   [Full Text] [Related]  

  • 58. Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants.
    Wouterlood M; Cawthray GR; Scanlon TT; Lambers H; Veneklaas EJ
    New Phytol; 2004 Jun; 162(3):745-753. PubMed ID: 33873771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation?
    Yoneyama K; Xie X; Kim HI; Kisugi T; Nomura T; Sekimoto H; Yokota T; Yoneyama K
    Planta; 2012 Jun; 235(6):1197-207. PubMed ID: 22183123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.
    Ali MA; Louche J; Legname E; Duchemin M; Plassard C
    Tree Physiol; 2009 Dec; 29(12):1587-97. PubMed ID: 19840995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.