These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28670743)

  • 81. Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage.
    Weisskopf L; Tomasi N; Santelia D; Martinoia E; Langlade NB; Tabacchi R; Abou-Mansour E
    New Phytol; 2006; 171(3):657-68. PubMed ID: 16866966
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat.
    Ryan PR; James RA; Weligama C; Delhaize E; Rattey A; Lewis DC; Bovill WD; McDonald G; Rathjen TM; Wang E; Fettell NA; Richardson AE
    Physiol Plant; 2014 Jul; 151(3):230-42. PubMed ID: 24433537
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)?
    Denton MD; Veneklaas EJ; Lambers H
    New Phytol; 2007; 173(3):592-599. PubMed ID: 17244054
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evaluation of methods to measure differential 15N labeling of soil and root N pools for studies of root exudation.
    Hertenberger G; Wanek W
    Rapid Commun Mass Spectrom; 2004; 18(20):2415-25. PubMed ID: 15386635
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake.
    McManus P; Hortin J; Anderson AJ; Jacobson AR; Britt DW; Stewart J; McLean JE
    Environ Toxicol Chem; 2018 Oct; 37(10):2619-2632. PubMed ID: 29978493
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Root release and metabolism of organic acids in tea plants in response to phosphorus supply.
    Lin ZH; Chen LS; Chen RB; Zhang FZ; Jiang HX; Tang N; Smith BR
    J Plant Physiol; 2011 May; 168(7):644-52. PubMed ID: 21315475
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fungal communities influence root exudation rates in pine seedlings.
    Meier IC; Avis PG; Phillips RP
    FEMS Microbiol Ecol; 2013 Mar; 83(3):585-95. PubMed ID: 23013386
    [TBL] [Abstract][Full Text] [Related]  

  • 88. [Ecological effect of plant root exudates and related affecting factors: a review].
    Luo YQ; Zhao XY; Li MX
    Ying Yong Sheng Tai Xue Bao; 2012 Dec; 23(12):3496-504. PubMed ID: 23479896
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.
    Yin H; Li Y; Xiao J; Xu Z; Cheng X; Liu Q
    Glob Chang Biol; 2013 Jul; 19(7):2158-67. PubMed ID: 23504744
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A novel proxy to examine interspecific phosphorus facilitation between plant species.
    Yu RP; Su Y; Lambers H; van Ruijven J; An R; Yang H; Yin XT; Xing Y; Zhang WP; Li L
    New Phytol; 2023 Sep; 239(5):1637-1650. PubMed ID: 37366046
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply.
    Lyu Y; Tang H; Li H; Zhang F; Rengel Z; Whalley WR; Shen J
    Front Plant Sci; 2016; 7():1939. PubMed ID: 28066491
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Root positioning and trait shifts in Hibbertia racemosa as dependent on its neighbour's nutrient-acquisition strategy.
    de Britto Costa P; Staudinger C; Veneklaas EJ; Oliveira RS; Lambers H
    Plant Cell Environ; 2021 Apr; 44(4):1257-1267. PubMed ID: 33386607
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Changed clonal growth form induced by sand burial facilitates the acclimation of Carex brevicuspis to competition.
    Li F; Xie Y; Zhu L; Jiang L; Chen X; Pan B; Deng Z
    PLoS One; 2015; 10(3):e0121270. PubMed ID: 25822734
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.
    Bowsher AW; Ali R; Harding SA; Tsai CJ; Donovan LA
    PLoS One; 2016; 11(1):e0148280. PubMed ID: 26824236
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Root Handling Affects Carboxylates Exudation and Phosphate Uptake of White Lupin Roots.
    Tiziani R; Mimmo T; Valentinuzzi F; Pii Y; Celletti S; Cesco S
    Front Plant Sci; 2020; 11():584568. PubMed ID: 33117414
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Root exudation potential in contrasting soybean genotypes in response to low soil phosphorus availability is determined by photo-biochemical processes.
    Vengavasi K; Pandey R
    Plant Physiol Biochem; 2018 Mar; 124():1-9. PubMed ID: 29309926
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast.
    Matsuoka H; Akiyama M; Kobayashi K; Yamaji K
    Curr Microbiol; 2013 Mar; 66(3):314-21. PubMed ID: 23196704
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Root developmental responses to phosphorus nutrition.
    Liu D
    J Integr Plant Biol; 2021 Jun; 63(6):1065-1090. PubMed ID: 33710755
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Autotoxicity of root exudates varies with species identity and soil phosphorus.
    Sun ZK; He WM
    Ecotoxicology; 2019 May; 28(4):429-434. PubMed ID: 30904977
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Carbon-Phosphorus Coupling Governs Microbial Effects on Nutrient Acquisition Strategies by Four Crops.
    Zhang D; Zhang Y; Zhao Z; Xu S; Cai S; Zhu H; Rengel Z; Kuzyakov Y
    Front Plant Sci; 2022; 13():924154. PubMed ID: 35865291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.