These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 28671003)
1. Effective antigen delivery via dual entrapment in erythrocytes and autologous plasma beads. Fatima MT; Ahmad E; Hoque M J Drug Target; 2018 Feb; 26(2):162-171. PubMed ID: 28671003 [TBL] [Abstract][Full Text] [Related]
2. Entrapment in plasma microparticles: a promising strategy for antigen delivery. Fatima MT; Ahmad E; Saleemuddin M J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1244-54. PubMed ID: 24500854 [TBL] [Abstract][Full Text] [Related]
3. Vaccine potential of plasma bead-based dual antigen delivery system against experimental murine candidiasis. Ahmad E; Zia Q; Fatima MT; Owais M; Saleemuddin M Int J Biol Macromol; 2015 Nov; 81():100-11. PubMed ID: 26231333 [TBL] [Abstract][Full Text] [Related]
4. Plasma beads loaded with Candida albicans cytosolic proteins impart protection against the fungal infection in BALB/c mice. Ahmad E; Fatima MT; Saleemuddin M; Owais M Vaccine; 2012 Nov; 30(48):6851-8. PubMed ID: 23044405 [TBL] [Abstract][Full Text] [Related]
5. Plasma Bead Entrapped Liposomes as a Potential Drug Delivery System to Combat Fungal Infections. Fatima MT; Islam Z; Ahmad E; Hoque M; Yamin M Molecules; 2022 Feb; 27(3):. PubMed ID: 35164370 [TBL] [Abstract][Full Text] [Related]
7. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. Mohanan D; Slütter B; Henriksen-Lacey M; Jiskoot W; Bouwstra JA; Perrie Y; Kündig TM; Gander B; Johansen P J Control Release; 2010 Nov; 147(3):342-9. PubMed ID: 20727926 [TBL] [Abstract][Full Text] [Related]
8. Beaded plasma clot: a potent sustained-release, drug-delivery system. Ahmad E; Fatima MT; Owais M; Saleemuddin M Ther Deliv; 2011 May; 2(5):573-83. PubMed ID: 22833975 [TBL] [Abstract][Full Text] [Related]
9. Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro. Downs EC; Robertson NE; Riss TL; Plunkett ML J Cell Physiol; 1992 Aug; 152(2):422-9. PubMed ID: 1379248 [TBL] [Abstract][Full Text] [Related]
10. Development and characterization of chitosan coated poly-(ɛ-caprolactone) nanoparticulate system for effective immunization against influenza. Gupta NK; Tomar P; Sharma V; Dixit VK Vaccine; 2011 Nov; 29(48):9026-37. PubMed ID: 21939718 [TBL] [Abstract][Full Text] [Related]
11. Immunologic aspects of enzyme replacement therapy. An evaluation of the immune response to unentrapped, erythrocyte- and liposome-entrapped enzyme in C3H/HeJ Gush mice. Hudson LD; Fiddler MB; Desnick RJ Birth Defects Orig Artic Ser; 1980; 16(1):163-78. PubMed ID: 6778523 [TBL] [Abstract][Full Text] [Related]
12. Cell-Mediated and Humoral Immune Responses to Bordetella pertussis Inactivated Whole-Cells Encapsulated Alginate Microspheres as a New Vaccine Candidate. Dounighi NM; Shahcheraghi F; Razzaghi-Abyaneh M; Nofeli M; Zolfagharian H Curr Pharm Biotechnol; 2017; 18(7):585-593. PubMed ID: 28814229 [TBL] [Abstract][Full Text] [Related]
13. Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes. Chen X; Wang L; Liu Q; Jia J; Liu Y; Zhang W; Ma G; Su Z Int Immunopharmacol; 2014 Dec; 23(2):592-602. PubMed ID: 25466267 [TBL] [Abstract][Full Text] [Related]
14. Fibrin matrices: The versatile therapeutic delivery systems. Ahmad E; Fatima MT; Hoque M; Owais M; Saleemuddin M Int J Biol Macromol; 2015 Nov; 81():121-36. PubMed ID: 26231328 [TBL] [Abstract][Full Text] [Related]
15. Modulation of the humoral response to repeat and non-repeat sequences of the circumsporozoite protein of Plasmodium vivax using novel adjuvant and delivery systems. Thomas BE; Manocha M; Haq W; Adak T; Pillai CR; Rao DN Ann Trop Med Parasitol; 2001 Jul; 95(5):451-72. PubMed ID: 11487368 [TBL] [Abstract][Full Text] [Related]
16. Immunological evaluation of repeated administration of erythrocyte-entrapped protein to C3H/HeJ mice. Fiddler MB; Hudson LD; Desnick RJ Biochem J; 1977 Nov; 168(2):141-5. PubMed ID: 597265 [TBL] [Abstract][Full Text] [Related]
17. Vaccine potential of cytosolic proteins loaded fibrin microspheres of Cryptococcus neoformans in BALB/c mice. Khan AA; Jabeen M; Chauhan A; Owais M J Drug Target; 2012 Jun; 20(5):453-66. PubMed ID: 22553959 [TBL] [Abstract][Full Text] [Related]
18. Modulation of the humoral immune response by targeting CD40 and FcγRII/III; delivery of soluble but not particulate antigen to CD40 enhances antibody responses with a Th1 bias. Szekeres Z; Herbáth M; Szittner Z; Papp K; Erdei A; Prechl J Mol Immunol; 2011 Oct; 49(1-2):155-62. PubMed ID: 21893346 [TBL] [Abstract][Full Text] [Related]
19. Potential of Translationally Controlled Tumor Protein-Derived Protein Transduction Domains as Antigen Carriers for Nasal Vaccine Delivery. Bae HD; Lee J; Jin XH; Lee K Mol Pharm; 2016 Sep; 13(9):3196-205. PubMed ID: 27454469 [TBL] [Abstract][Full Text] [Related]
20. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg. Chen X; Liu Y; Wang L; Liu Y; Zhang W; Fan B; Ma X; Yuan Q; Ma G; Su Z Mol Pharm; 2014 Jun; 11(6):1772-84. PubMed ID: 24738485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]