These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 28671033)
1. Regularized approach for data missing not at random. Tseng CH; Chen YH Stat Methods Med Res; 2019 Jan; 28(1):134-150. PubMed ID: 28671033 [TBL] [Abstract][Full Text] [Related]
2. A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness. Jin M Contemp Clin Trials; 2022 Sep; 120():106859. PubMed ID: 35872135 [TBL] [Abstract][Full Text] [Related]
3. Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors. Galimard JE; Chevret S; Curis E; Resche-Rigon M BMC Med Res Methodol; 2018 Aug; 18(1):90. PubMed ID: 30170561 [TBL] [Abstract][Full Text] [Related]
4. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials. Mallinckrodt CH; Lin Q; Molenberghs M Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075 [TBL] [Abstract][Full Text] [Related]
5. Simulation-based sensitivity analysis for non-ignorably missing data. Yin P; Shi JQ Stat Methods Med Res; 2019 Jan; 28(1):289-308. PubMed ID: 28747095 [TBL] [Abstract][Full Text] [Related]
6. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout. Yang M; Maxwell SE Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928 [TBL] [Abstract][Full Text] [Related]
7. Analytical results in longitudinal studies depended on target of inference and assumed mechanism of attrition. Jones M; Mishra GD; Dobson A J Clin Epidemiol; 2015 Oct; 68(10):1165-75. PubMed ID: 25920943 [TBL] [Abstract][Full Text] [Related]
8. Longitudinal data analysis with non-ignorable missing data. Tseng CH; Elashoff R; Li N; Li G Stat Methods Med Res; 2016 Feb; 25(1):205-20. PubMed ID: 22637472 [TBL] [Abstract][Full Text] [Related]
9. A multiple imputation approach for MNAR mechanisms compatible with Heckman's model. Galimard JE; Chevret S; Protopopescu C; Resche-Rigon M Stat Med; 2016 Jul; 35(17):2907-20. PubMed ID: 26893215 [TBL] [Abstract][Full Text] [Related]
10. Quantile regression and empirical likelihood for the analysis of longitudinal data with monotone missing responses due to dropout, with applications to quality of life measurements from clinical trials. Lv Y; Qin G; Zhu Z; Tu D Stat Med; 2019 Jul; 38(16):2972-2991. PubMed ID: 30997691 [TBL] [Abstract][Full Text] [Related]
11. A multiple imputation-based sensitivity analysis approach for regression analysis with a missing not at random covariate. Hsu CH; He Y; Hu C; Zhou W Stat Med; 2023 Jun; 42(14):2275-2292. PubMed ID: 36997162 [TBL] [Abstract][Full Text] [Related]
12. A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials. Wu J; Chen MH; Schifano ED; Ibrahim JG; Fisher JD Stat Med; 2019 Dec; 38(30):5565-5586. PubMed ID: 31691322 [TBL] [Abstract][Full Text] [Related]
13. Missing not at random models for latent growth curve analyses. Enders CK Psychol Methods; 2011 Mar; 16(1):1-16. PubMed ID: 21381816 [TBL] [Abstract][Full Text] [Related]
14. Bayesian sensitivity analyses for longitudinal data with dropouts that are potentially missing not at random: A high dimensional pattern-mixture model. Kaciroti NA; Little RJA Stat Med; 2021 Sep; 40(21):4609-4628. PubMed ID: 34405912 [TBL] [Abstract][Full Text] [Related]
15. A local influence sensitivity analysis for incomplete longitudinal depression data. Shen S; Beunckens C; Mallinckrodt C; Molenberghs G J Biopharm Stat; 2006 May; 16(3):365-84. PubMed ID: 16724491 [TBL] [Abstract][Full Text] [Related]
16. Defining, evaluating, and removing bias induced by linear imputation in longitudinal clinical trials with MNAR missing data. Helms RW; Reece LH; Helms RW; Helms MW J Biopharm Stat; 2011 Mar; 21(2):226-51. PubMed ID: 21390998 [TBL] [Abstract][Full Text] [Related]
17. Application of pattern-mixture models to outcomes that are potentially missing not at random using pseudo maximum likelihood estimation. Shen C; Weissfeld L Biostatistics; 2005 Apr; 6(2):333-47. PubMed ID: 15772110 [TBL] [Abstract][Full Text] [Related]
18. A sensitivity analysis approach for informative dropout using shared parameter models. Su L; Li Q; Barrett JK; Daniels MJ Biometrics; 2019 Sep; 75(3):917-926. PubMed ID: 30666621 [TBL] [Abstract][Full Text] [Related]
19. Bayesian analysis of longitudinal dyadic data with informative missing data using a dyadic shared-parameter model. Ahn J; Morita S; Wang W; Yuan Y Stat Methods Med Res; 2019 Jan; 28(1):70-83. PubMed ID: 28629259 [TBL] [Abstract][Full Text] [Related]
20. A latent-class mixture model for incomplete longitudinal Gaussian data. Beunckens C; Molenberghs G; Verbeke G; Mallinckrodt C Biometrics; 2008 Mar; 64(1):96-105. PubMed ID: 17608789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]