These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel. Wang B; Lv L; Wang Z; Jiang Y; Lv W; Liu X; Wang Z; Zhao Y; Xin H; Xu Q Sci Rep; 2015 Nov; 5():16589. PubMed ID: 26567528 [TBL] [Abstract][Full Text] [Related]
6. Adipose tissue-derived stromal cells primed in vitro with paclitaxel acquire anti-tumor activity. Bonomi A; Coccè V; Cavicchini L; Sisto F; Dossena M; Balzarini P; Portolani N; Ciusani E; Parati E; Alessandri G; Pessina A Int J Immunopathol Pharmacol; 2013; 26(1 Suppl):33-41. PubMed ID: 24046947 [TBL] [Abstract][Full Text] [Related]
7. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Bonomi A; Silini A; Vertua E; Signoroni PB; Coccè V; Cavicchini L; Sisto F; Alessandri G; Pessina A; Parolini O Stem Cell Res Ther; 2015 Aug; 6(1):155. PubMed ID: 26315881 [TBL] [Abstract][Full Text] [Related]
8. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Zhan C; Gu B; Xie C; Li J; Liu Y; Lu W J Control Release; 2010 Apr; 143(1):136-42. PubMed ID: 20056123 [TBL] [Abstract][Full Text] [Related]
9. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment. Kang T; Zhu Q; Jiang D; Feng X; Feng J; Jiang T; Yao J; Jing Y; Song Q; Jiang X; Gao X; Chen J Biomaterials; 2016 Sep; 101():60-75. PubMed ID: 27267628 [TBL] [Abstract][Full Text] [Related]
10. Fibronectin-adherent peripheral blood derived mononuclear cells as Paclitaxel carriers for glioblastoma treatment: An in vitro study. Schiariti MP; Restelli F; Ferroli P; Benetti A; Berenzi A; Ferri A; Ceserani V; Ciusani E; Cadei M; Finocchiaro G; Pessina A; Parati E; Pallini R; Alessandri G Cytotherapy; 2017 Jun; 19(6):721-734. PubMed ID: 28434806 [TBL] [Abstract][Full Text] [Related]
11. Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Chung DJ; Hayashi K; Toupadakis CA; Wong A; Yellowley CE Res Vet Sci; 2012 Feb; 92(1):66-75. PubMed ID: 21075407 [TBL] [Abstract][Full Text] [Related]
12. Paclitaxel loaded phospholipid-based gel as a drug delivery system for local treatment of glioma. Chen T; Gong T; Zhao T; Liu X; Fu Y; Zhang Z; Gong T Int J Pharm; 2017 Aug; 528(1-2):127-132. PubMed ID: 28596136 [TBL] [Abstract][Full Text] [Related]
13. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. Pascucci L; Coccè V; Bonomi A; Ami D; Ceccarelli P; Ciusani E; Viganò L; Locatelli A; Sisto F; Doglia SM; Parati E; Bernardo ME; Muraca M; Alessandri G; Bondiolotti G; Pessina A J Control Release; 2014 Oct; 192():262-70. PubMed ID: 25084218 [TBL] [Abstract][Full Text] [Related]
15. Donor-matched functional and molecular characterization of canine mesenchymal stem cells derived from different origins. Ock SA; Maeng GH; Lee YM; Kim TH; Kumar BM; Lee SL; Rho GJ Cell Transplant; 2013; 22(12):2311-21. PubMed ID: 23068964 [TBL] [Abstract][Full Text] [Related]
16. A novel therapeutic system for malignant glioma: nanoformulation, pharmacokinetic, and anticancer properties of cell-nano-drug delivery. Tao Y; Ning M; Dou H Nanomedicine; 2013 Feb; 9(2):222-32. PubMed ID: 23123732 [TBL] [Abstract][Full Text] [Related]