These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 28671202)
1. Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum. Jung KB; Son YS; Lee H; Jung CR; Kim J; Son MY Mol Biosyst; 2017 Jul; 13(8):1565-1574. PubMed ID: 28671202 [TBL] [Abstract][Full Text] [Related]
2. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Hemmi N; Tohyama S; Nakajima K; Kanazawa H; Suzuki T; Hattori F; Seki T; Kishino Y; Hirano A; Okada M; Tabei R; Ohno R; Fujita C; Haruna T; Yuasa S; Sano M; Fujita J; Fukuda K Stem Cells Transl Med; 2014 Dec; 3(12):1473-83. PubMed ID: 25355733 [TBL] [Abstract][Full Text] [Related]
3. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Moon SH; Ban K; Kim C; Kim SS; Byun J; Song MK; Park IH; Yu SP; Yoon YS Int J Cardiol; 2013 Sep; 168(1):41-52. PubMed ID: 23044428 [TBL] [Abstract][Full Text] [Related]
4. Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells. Pei F; Jiang J; Bai S; Cao H; Tian L; Zhao Y; Yang C; Dong H; Ma Y Stem Cell Res; 2017 Mar; 19():94-103. PubMed ID: 28110125 [TBL] [Abstract][Full Text] [Related]
5. Generation and purification of human stem cell-derived cardiomyocytes. Schwach V; Passier R Differentiation; 2016; 91(4-5):126-38. PubMed ID: 26915912 [TBL] [Abstract][Full Text] [Related]
6. Human cardiomyocyte generation from pluripotent stem cells: A state-of-art. Talkhabi M; Aghdami N; Baharvand H Life Sci; 2016 Jan; 145():98-113. PubMed ID: 26682938 [TBL] [Abstract][Full Text] [Related]
7. Generation of functional cardiomyocytes from rat embryonic and induced pluripotent stem cells using feeder-free expansion and differentiation in suspension culture. Dahlmann J; Awad G; Dolny C; Weinert S; Richter K; Fischer KD; Munsch T; Leßmann V; Volleth M; Zenker M; Chen Y; Merkl C; Schnieke A; Baraki H; Kutschka I; Kensah G PLoS One; 2018; 13(3):e0192652. PubMed ID: 29513687 [TBL] [Abstract][Full Text] [Related]
8. A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Fonoudi H; Ansari H; Abbasalizadeh S; Larijani MR; Kiani S; Hashemizadeh S; Zarchi AS; Bosman A; Blue GM; Pahlavan S; Perry M; Orr Y; Mayorchak Y; Vandenberg J; Talkhabi M; Winlaw DS; Harvey RP; Aghdami N; Baharvand H Stem Cells Transl Med; 2015 Dec; 4(12):1482-94. PubMed ID: 26511653 [TBL] [Abstract][Full Text] [Related]
9. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. Burridge PW; Thompson S; Millrod MA; Weinberg S; Yuan X; Peters A; Mahairaki V; Koliatsos VE; Tung L; Zambidis ET PLoS One; 2011 Apr; 6(4):e18293. PubMed ID: 21494607 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. van den Berg CW; Okawa S; Chuva de Sousa Lopes SM; van Iperen L; Passier R; Braam SR; Tertoolen LG; del Sol A; Davis RP; Mummery CL Development; 2015 Sep; 142(18):3231-8. PubMed ID: 26209647 [TBL] [Abstract][Full Text] [Related]
11. Generation of Cardiomyocytes from Pluripotent Stem Cells. Nakahama H; Di Pasquale E Methods Mol Biol; 2016; 1353():181-90. PubMed ID: 25523811 [TBL] [Abstract][Full Text] [Related]
12. Transferrin improved the generation of cardiomyocyte from human pluripotent stem cells for myocardial infarction repair. Zhang F; Qiu H; Dong X; Wang C; Na J; Zhou J; Wang C J Mol Histol; 2021 Feb; 52(1):87-99. PubMed ID: 33179120 [TBL] [Abstract][Full Text] [Related]
14. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Moon SH; Kang SW; Park SJ; Bae D; Kim SJ; Lee HA; Kim KS; Hong KS; Kim JS; Do JT; Byun KH; Chung HM Biomaterials; 2013 May; 34(16):4013-4026. PubMed ID: 23465823 [TBL] [Abstract][Full Text] [Related]
15. Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes. Yoon CH; Kim TW; Koh SJ; Choi YE; Hur J; Kwon YW; Cho HJ; Kim HS BMB Rep; 2018 Feb; 51(2):85-91. PubMed ID: 29335067 [TBL] [Abstract][Full Text] [Related]
16. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. van den Heuvel NH; van Veen TA; Lim B; Jonsson MK J Mol Cell Cardiol; 2014 Feb; 67():12-25. PubMed ID: 24370890 [TBL] [Abstract][Full Text] [Related]
17. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Souidi M; Sleiman Y; Acimovic I; Pribyl J; Charrabi A; Baecker V; Scheuermann V; Pesl M; Jelinkova S; Skladal P; Dvorak P; Lacampagne A; Rotrekl V; Meli AC Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440843 [TBL] [Abstract][Full Text] [Related]
18. Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. van den Berg CW; Elliott DA; Braam SR; Mummery CL; Davis RP Methods Mol Biol; 2016; 1353():163-80. PubMed ID: 25626427 [TBL] [Abstract][Full Text] [Related]
19. Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes. Hazeltine LB; Badur MG; Lian X; Das A; Han W; Palecek SP Acta Biomater; 2014 Feb; 10(2):604-12. PubMed ID: 24200714 [TBL] [Abstract][Full Text] [Related]
20. Tissue of Origin, but Not XCI State, Influences Germ Cell Differentiation from Human Pluripotent Stem Cells. Chang YW; Overeem AW; Roelse CM; Fan X; Freund C; Chuva de Sousa Lopes SM Cells; 2021 Sep; 10(9):. PubMed ID: 34572048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]