These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28671250)

  • 1. Artificial neural networks as auxiliary tools for the improvement of bean plant architecture.
    Carneiro VQ; Silva GN; Cruz CD; Carneiro PCS; Nascimento M; Carneiro JES
    Genet Mol Res; 2017 Jun; 16(2):. PubMed ID: 28671250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic improvement of plant architecture in the common bean.
    Silva VM; Menezes Júnior JA; Carneiro PC; Carneiro JE; Cruz CD
    Genet Mol Res; 2013 Jan; 12(3):3093-102. PubMed ID: 23408452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of hypocotyl diameter in family selection aiming at plant architecture improvement of common bean.
    Oliveira AM; Batista RO; Carneiro PC; Carneiro JE; Cruz CD
    Genet Mol Res; 2015 Sep; 14(3):11515-23. PubMed ID: 26436392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotton genotypes selection through artificial neural networks.
    Júnior EGS; Cardoso DBO; Reis MC; Nascimento AFO; Bortolin DI; Martins MR; Sousa LB
    Genet Mol Res; 2017 Sep; 16(3):. PubMed ID: 28973775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence in the selection of common bean genotypes with high phenotypic stability.
    Corrêa AM; Teodoro PE; Gonçalves MC; Barroso LM; Nascimento M; Santos A; Torres FE
    Genet Mol Res; 2016 Apr; 15(2):. PubMed ID: 27173300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotype x environment interaction and stability of soybean cultivars for vegetative-stage characters.
    Chaves MVA; Silva NS; Silva RHO; Jorge GL; Silveira IC; Medeiros LA; Hamawaki RL; Hamawaki OT; Nogueira APO; Hamawaki CDL
    Genet Mol Res; 2017 Sep; 16(3):. PubMed ID: 28973772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks reveal efficiency in genetic value prediction.
    Peixoto LA; Bhering LL; Cruz CD
    Genet Mol Res; 2015 Jun; 14(2):6796-807. PubMed ID: 26125887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering of soybean genotypes via Ward-MLM and ANNs associated with mixed models.
    Teodoro PE; Torres FE; Corrêa AM
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27525912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle.
    Ehret A; Hochstuhl D; Gianola D; Thaller G
    Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean.
    Sonah H; O'Donoughue L; Cober E; Rajcan I; Belzile F
    Plant Biotechnol J; 2015 Feb; 13(2):211-21. PubMed ID: 25213593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis.
    Gobburu JV; Chen EP
    J Pharm Sci; 1996 May; 85(5):505-10. PubMed ID: 8742942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Local Convolutional Neural Networks for Genomic Prediction.
    Pook T; Freudenthal J; Korte A; Simianer H
    Front Genet; 2020; 11():561497. PubMed ID: 33281867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting progeny performance in common bean (Phaseolus vulgaris L.) using molecular marker-based cluster analysis.
    Beattie AD; Michaels TE; Pauls KP
    Genome; 2003 Apr; 46(2):259-67. PubMed ID: 12723042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of predictive ability of artificial neural networks using holographic mapping.
    Tompos A; Végvári L; Tfirst E; Margitfalvi JL
    Comb Chem High Throughput Screen; 2007 Feb; 10(2):121-34. PubMed ID: 17305487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diallel analysis to choose parents for black bean (Phaseolus vulgaris L.) breeding.
    Moura LM; Carneiro PC; Vale NM; Barili LD; Silva LC; Carneiro JE; Cruz CD
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic parameters and selection of soybean lines based on selection indexes.
    Teixeira FG; Hamawaki OT; Nogueira APO; Hamawaki RL; Jorge GL; Hamawaki CL; Machado BQV; Santana AJO
    Genet Mol Res; 2017 Sep; 16(3):. PubMed ID: 28973733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of genetic diversity among soybean (Glycine max) genotypes using univariate and multivariate analysis.
    Oliveira MM; Sousa LB; Reis MC; Silva Junior EG; Cardoso DBO; Hamawaki OT; Nogueira APO
    Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28613377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superiority of artificial neural networks for a genetic classification procedure.
    Sant'Anna IC; Tomaz RS; Silva GN; Nascimento M; Bhering LL; Cruz CD
    Genet Mol Res; 2015 Aug; 14(3):9898-906. PubMed ID: 26345924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptability and stability of soybean cultivars for grain yield and seed quality.
    Silva KB; Bruzi AT; Zambiazzi EV; Soares IO; Pereira JLAR; Carvalho MLM
    Genet Mol Res; 2017 May; 16(2):. PubMed ID: 28510255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of genetic parameters and selection of high-yielding, upright common bean lines with slow seed-coat darkening.
    Alvares RC; Silva FC; Melo LC; Melo PG; Pereira HS
    Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27886345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.