BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

701 related articles for article (PubMed ID: 28671290)

  • 1. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Kienzler A; Paini A; Pant R; Radovnikovic A; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3463-3470. PubMed ID: 28671290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving substance information in USEtox
    Saouter E; Aschberger K; Fantke P; Hauschild MZ; Bopp SK; Kienzler A; Paini A; Pant R; Secchi M; Sala S
    Environ Toxicol Chem; 2017 Dec; 36(12):3450-3462. PubMed ID: 28618056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment.
    Müller N; de Zwart D; Hauschild M; Kijko G; Fantke P
    Environ Toxicol Chem; 2017 Feb; 36(2):492-500. PubMed ID: 27355758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial analysis of toxic emissions in LCA: a sub-continental nested USEtox model with freshwater archetypes.
    Kounina A; Margni M; Shaked S; Bulle C; Jolliet O
    Environ Int; 2014 Aug; 69():67-89. PubMed ID: 24815341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Options for Deriving Chemical Ecotoxicity Hazard Values for the European Union Environmental Footprint, Part II.
    Saouter E; Wolff D; Biganzoli F; Versteeg D
    Integr Environ Assess Manag; 2019 Sep; 15(5):796-807. PubMed ID: 31115961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space.
    Marvuglia A; Kanevski M; Benetto E
    Environ Int; 2015 Oct; 83():72-85. PubMed ID: 26101085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using REACH for the EU Environmental Footprint: Building a Usable Ecotoxicity Database, Part I.
    Saouter E; Biganzoli F; Pant R; Sala S; Versteeg D
    Integr Environ Assess Manag; 2019 Sep; 15(5):783-795. PubMed ID: 31116000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecotoxicity characterization of chemicals: Global recommendations and implementation in USEtox.
    Owsianiak M; Hauschild MZ; Posthuma L; Saouter E; Vijver MG; Backhaus T; Douziech M; Schlekat T; Fantke P
    Chemosphere; 2023 Jan; 310():136807. PubMed ID: 36228725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freshwater ecotoxicity characterization factors for PMT/vPvM substances.
    Aggarwal R; Peters G
    Chemosphere; 2024 Jul; 360():142391. PubMed ID: 38777192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extrapolation Factors for Characterizing Freshwater Ecotoxicity Effects.
    Aurisano N; Albizzati PF; Hauschild M; Fantke P
    Environ Toxicol Chem; 2019 Nov; 38(11):2568-2582. PubMed ID: 31393623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of USEtox characterisation factors for dishwasher detergents using data made available under REACH.
    Igos E; Moeller R; Benetto E; Biwer A; Guiton M; Dieumegard P
    Chemosphere; 2014 Apr; 100():160-6. PubMed ID: 24321331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits.
    Bjørn A; Diamond M; Birkved M; Hauschild MZ
    Environ Sci Technol; 2014 Nov; 48(22):13253-62. PubMed ID: 25347848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REACH Specific Environmental Release Categories for Plant Protection Product Applications.
    Dobe C; Bonifay S; Krass JD; McMillan C; Terry A; Wormuth M
    Integr Environ Assess Manag; 2020 Jun; 16(4):472-480. PubMed ID: 32064739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated testing and intelligent assessment-new challenges under REACH.
    Ahlers J; Stock F; Werschkun B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):565-72. PubMed ID: 18818964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The exposure data landscape for manufactured chemicals.
    Egeghy PP; Judson R; Gangwal S; Mosher S; Smith D; Vail J; Cohen Hubal EA
    Sci Total Environ; 2012 Jan; 414():159-66. PubMed ID: 22104386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential application of ecological models in the European environmental risk assessment of chemicals. I. Review of protection goals in EU directives and regulations.
    Hommen U; Baveco JM; Galic N; van den Brink PJ
    Integr Environ Assess Manag; 2010 Jul; 6(3):325-37. PubMed ID: 20821697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.
    Card ML; Gomez-Alvarez V; Lee WH; Lynch DG; Orentas NS; Lee MT; Wong EM; Boethling RS
    Environ Sci Process Impacts; 2017 Mar; 19(3):203-212. PubMed ID: 28275775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. European freshwater silver monitoring data do not suggest a potential European-wide risk.
    Arijs K; Viaene K; Van Sprang P; Nys C; Mertens J
    Integr Environ Assess Manag; 2023 Jul; 19(4):1110-1119. PubMed ID: 36571154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals.
    Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF
    Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.