BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28671678)

  • 1. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants.
    Schenck CA; Holland CK; Schneider MR; Men Y; Lee SG; Jez JM; Maeda HA
    Nat Chem Biol; 2017 Sep; 13(9):1029-1035. PubMed ID: 28671678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes.
    Schenck CA; Men Y; Maeda HA
    Front Mol Biosci; 2017; 4():73. PubMed ID: 29164132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes.
    Schenck CA; Chen S; Siehl DL; Maeda HA
    Nat Chem Biol; 2015 Jan; 11(1):52-7. PubMed ID: 25402771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales.
    Lopez-Nieves S; Yang Y; Timoneda A; Wang M; Feng T; Smith SA; Brockington SF; Maeda HA
    New Phytol; 2018 Jan; 217(2):896-908. PubMed ID: 28990194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cytosolic, tyrosine-insensitive prephenate dehydrogenase in
    Schenck CA; Westphal J; Jayaraman D; Garcia K; Wen J; Mysore KS; Ané JM; Sumner LW; Maeda HA
    Plant Direct; 2020 May; 4(5):e00218. PubMed ID: 32368714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota).
    Lopez-Nieves S; Pringle A; Maeda HA
    Arch Biochem Biophys; 2019 Apr; 665():12-19. PubMed ID: 30771296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta.
    Lopez-Nieves S; El-Azaz J; Men Y; Holland CK; Feng T; Brockington SF; Jez JM; Maeda HA
    Plant J; 2022 Feb; 109(4):844-855. PubMed ID: 34807484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A monofunctional prephenate dehydrogenase created by cleavage of the 5' 109 bp of the tyrA gene from Erwinia herbicola.
    Xia T; Zhao G; Fischer RS; Jensen RA
    J Gen Microbiol; 1992 Jul; 138(7):1309-16. PubMed ID: 1512561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis.
    Bonner CA; Jensen RA; Gander JE; Keyhani NO
    Biochem J; 2004 Aug; 382(Pt 1):279-91. PubMed ID: 15171683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Environ Microbiol; 2005 Nov; 71(11):7224-8. PubMed ID: 16269762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclohexadienyl dehydrogenase from Pseudomonas stutzeri exemplifies a widespread type of tyrosine-pathway dehydrogenase in the TyrA protein family.
    Xie G; Bonner CA; Jensen RA
    Comp Biochem Physiol C Toxicol Pharmacol; 2000 Jan; 125(1):65-83. PubMed ID: 11790331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition.
    Sun W; Shahinas D; Bonvin J; Hou W; Kimber MS; Turnbull J; Christendat D
    J Biol Chem; 2009 May; 284(19):13223-32. PubMed ID: 19279014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization and crystal structure of Synechocystis arogenate dehydrogenase provide insights into catalytic reaction.
    Legrand P; Dumas R; Seux M; Rippert P; Ravelli R; Ferrer JL; Matringe M
    Structure; 2006 Apr; 14(4):767-76. PubMed ID: 16615917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway.
    Dornfeld C; Weisberg AJ; K C R; Dudareva N; Jelesko JG; Maeda HA
    Plant Cell; 2014 Jul; 26(7):3101-14. PubMed ID: 25070637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine biosynthesis, metabolism, and catabolism in plants.
    Schenck CA; Maeda HA
    Phytochemistry; 2018 May; 149():82-102. PubMed ID: 29477627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context.
    Song J; Bonner CA; Wolinsky M; Jensen RA
    BMC Biol; 2005 May; 3():13. PubMed ID: 15888209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine metabolism: identification of a key residue in the acquisition of prephenate aminotransferase activity by 1β aspartate aminotransferase.
    Giustini C; Graindorge M; Cobessi D; Crouzy S; Robin A; Curien G; Matringe M
    FEBS J; 2019 Jun; 286(11):2118-2134. PubMed ID: 30771275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine biosynthesis in Sorghum bicolor: isolation and regulatory properties of arogenate dehydrogenase.
    Connelly JA; Conn EE
    Z Naturforsch C J Biosci; 1986; 41(1-2):69-78. PubMed ID: 2939643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes.
    Chiu HJ; Abdubek P; Astakhova T; Axelrod HL; Carlton D; Clayton T; Das D; Deller MC; Duan L; Feuerhelm J; Grant JC; Grzechnik A; Han GW; Jaroszewski L; Jin KK; Klock HE; Knuth MW; Kozbial P; Krishna SS; Kumar A; Marciano D; McMullan D; Miller MD; Morse AT; Nigoghossian E; Okach L; Reyes R; Tien HJ; Trame CB; van den Bedem H; Weekes D; Xu Q; Hodgson KO; Wooley J; Elsliger MA; Deacon AM; Godzik A; Lesley SA; Wilson IA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Oct; 66(Pt 10):1317-25. PubMed ID: 20944228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical analysis of Bacillus anthracis prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain.
    Shabalin IG; Gritsunov A; Hou J; Sławek J; Miks CD; Cooper DR; Minor W; Christendat D
    FEBS J; 2020 Jun; 287(11):2235-2255. PubMed ID: 31750992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.