These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28671814)

  • 1. Preparation and Gas Permeation Properties of Fluorine-Silica Membranes with Controlled Amorphous Silica Structures: Effect of Fluorine Source and Calcination Temperature on Network Size.
    Kanezashi M; Matsutani T; Wakihara T; Nagasawa H; Okubo T; Tsuru T
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24625-24633. PubMed ID: 28671814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring a Thermally Stable Amorphous SiOC Structure for the Separation of Large Molecules: The Effect of Calcination Temperature on SiOC Structures and Gas Permeation Properties.
    Inde H; Kanezashi M; Nagasawa H; Nakaya T; Tsuru T
    ACS Omega; 2018 Jun; 3(6):6369-6377. PubMed ID: 31458820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine Doping of Microporous Organosilica Membranes for Pore Size Control and Enhanced Hydrophobic Properties.
    Kanezashi M; Murata M; Nagasawa H; Tsuru T
    ACS Omega; 2018 Aug; 3(8):8612-8620. PubMed ID: 31458991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of C/Si Ratio and Fluorine Doping on the Gas Permeation Properties of Pendant-Type and Bridged-Type Organosilica Membranes.
    Rana I; Nagaoka T; Nagasawa H; Tsuru T; Kanezashi M
    Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Pore Structures of Organosilica Membranes for Enhanced Desalination Performance via the Control of Calcination Temperatures.
    Xu R; Liu Q; Ren X; Lin P; Zhong J
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33287360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and Hydrothermal Stability of Microporous Niobia-Silica Membranes: Effect of Niobium Doping Contents.
    Xia J; Yang J; Zhang H; Guo Y; Zhang R
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation.
    Mise Y; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST
    Membranes (Basel); 2019 Sep; 9(10):. PubMed ID: 31547032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zirconia-Doped Methylated Silica Membranes via Sol-Gel Process: Microstructure and Hydrogen Permselectivity.
    Wang L; Yang J
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly hydrothermally stable microporous silica membranes for hydrogen separation.
    Wei Q; Wang F; Nie ZR; Song CL; Wang YL; Li QY
    J Phys Chem B; 2008 Aug; 112(31):9354-9. PubMed ID: 18613718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness.
    Ashirov T; Yazaydin AO; Coskun A
    Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bench-Scale Membrane Reactor for Methylcyclohexane Dehydrogenation Using Silica Membrane Module.
    Seshimo M; Urai H; Sasa K; Nishino H; Yamaguchi Y; Nishida R; Nakao SI
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33946729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes.
    Kato H; Lundin SB; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31684187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas Permeation Properties of High-Silica CHA-Type Zeolite Membrane.
    Hasegawa Y; Abe C; Natsui M; Ikeda A
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33808334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterization of Silica-Tantala Microporous Membranes for Gas Separations Fabricated Using Chemical Vapor Deposition.
    Lundin SB; Wang H; Oyama ST
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network tailoring of organosilica membranes
    Moriyama N; Ike M; Nagasawa H; Kanezashi M; Tsuru T
    RSC Adv; 2022 Feb; 12(10):5834-5846. PubMed ID: 35424575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the pore sizes of novel silica membranes for improved gas permeation properties via an in situ reaction between NH3 and Si-H groups.
    Kanezashi M; Matsugasako R; Tawarayama H; Nagasawa H; Yoshioka T; Tsuru T
    Chem Commun (Camb); 2015 Feb; 51(13):2551-4. PubMed ID: 25566848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation Study of Solid Vibration Permeation in Microporous Amorphous Silica Network Voids.
    Yoshioka T; Nakata A; Tung KL; Kanezashi M; Tsuru T
    Membranes (Basel); 2019 Oct; 9(10):. PubMed ID: 31614817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-selectivity, high-flux silica membranes for gas separation.
    de Vos RM ; Verweij H
    Science; 1998 Mar; 279(5357):1710-1. PubMed ID: 9497287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.