These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28671818)

  • 1. An "EAR" on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure-Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters.
    Blackwell BR; Ankley GT; Corsi SR; DeCicco LA; Houck KA; Judson RS; Li S; Martin MT; Murphy E; Schroeder AL; Smith ER; Swintek J; Villeneuve DL
    Environ Sci Technol; 2017 Aug; 51(15):8713-8724. PubMed ID: 28671818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing chemicals of ecological concern in Great Lakes tributaries using high-throughput screening data and adverse outcome pathways.
    Corsi SR; De Cicco LA; Villeneuve DL; Blackwell BR; Fay KA; Ankley GT; Baldwin AK
    Sci Total Environ; 2019 Oct; 686():995-1009. PubMed ID: 31412529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Chemicals and Mixtures of Potential Biological Concern Detected in Passive Samplers from Great Lakes Tributaries Using High-Throughput Data and Biological Pathways.
    Alvarez DA; Corsi SR; De Cicco LA; Villeneuve DL; Baldwin AK
    Environ Toxicol Chem; 2021 Aug; 40(8):2165-2182. PubMed ID: 34003517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach for identifying priority contaminant in the Great Lakes Basin - Investigations in the Lower Green Bay/Fox River and Milwaukee Estuary areas of concern.
    Li S; Villeneuve DL; Berninger JP; Blackwell BR; Cavallin JE; Hughes MN; Jensen KM; Jorgenson Z; Kahl MD; Schroeder AL; Stevens KE; Thomas LM; Weberg MA; Ankley GT
    Sci Total Environ; 2017 Feb; 579():825-837. PubMed ID: 27866739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk-Based Prioritization of Organic Chemicals and Locations of Ecological Concern in Sediment From Great Lakes Tributaries.
    Baldwin AK; Corsi SR; Stefaniak OM; Loken LC; Villeneuve DL; Ankley GT; Blackwell BR; Lenaker PL; Nott MA; Mills MA
    Environ Toxicol Chem; 2022 Apr; 41(4):1016-1041. PubMed ID: 35170813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of high-throughput screening results to prioritize chemicals for potential adverse biological effects within a West Virginia watershed.
    Rose LD; Akob DM; Tuberty SR; Corsi SR; DeCicco LA; Colby JD; Martin DJ
    Sci Total Environ; 2019 Aug; 677():362-372. PubMed ID: 31059879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers.
    Loken LC; Corsi SR; Alvarez DA; Ankley GT; Baldwin AK; Blackwell BR; De Cicco LA; Nott MA; Oliver SK; Villeneuve DL
    Environ Toxicol Chem; 2023 Feb; 42(2):340-366. PubMed ID: 36165576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin.
    Davis JM; Ekman DR; Teng Q; Ankley GT; Berninger JP; Cavallin JE; Jensen KM; Kahl MD; Schroeder AL; Villeneuve DL; Jorgenson ZG; Lee KE; Collette TW
    Environ Toxicol Chem; 2016 Oct; 35(10):2493-2502. PubMed ID: 27027868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.
    Hutchinson TH; Lyons BP; Thain JE; Law RJ
    Mar Pollut Bull; 2013 Sep; 74(2):517-25. PubMed ID: 23820191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Priority screening of contaminants of emerging concern (CECs) in surface water: Comparing cell-based bioassays and exposure-activity ratios (EARs).
    Vanden Heuvel JP; Granda M; Ferguson F; Glaberman SR; Preisendanz HE
    Sci Total Environ; 2024 Nov; 953():176115. PubMed ID: 39260470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes.
    Jorgenson ZG; Thomas LM; Elliott SM; Cavallin JE; Randolph EC; Choy SJ; Alvarez DA; Banda JA; Gefell DJ; Lee KE; Furlong ET; Schoenfuss HL
    Environ Pollut; 2018 May; 236():718-733. PubMed ID: 29454282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using ToxCast to Explore Chemical Activities and Hazard Traits: A Case Study With Ortho-Phthalates.
    Pham N; Iyer S; Hackett E; Lock BH; Sandy M; Zeise L; Solomon G; Marty M
    Toxicol Sci; 2016 Jun; 151(2):286-301. PubMed ID: 26969370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contaminants in bald eagles of the upper Midwestern U.S.: A framework for prioritizing future research based on in-vitro bioassays.
    Elliott SM; Route WT; DeCicco LA; VanderMeulen DD; Corsi SR; Blackwell BR
    Environ Pollut; 2019 Jan; 244():861-870. PubMed ID: 30469280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations.
    Jeong J; Kim D; Choi J
    Toxicol In Vitro; 2022 Oct; 84():105451. PubMed ID: 35921976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.
    Shah F; Greene N
    Chem Res Toxicol; 2014 Jan; 27(1):86-98. PubMed ID: 24328225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration and distribution of contaminants in lake trout and walleye from the Laurentian Great Lakes (2008-2012).
    McGoldrick DJ; Murphy EW
    Environ Pollut; 2016 Oct; 217():85-96. PubMed ID: 26740246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development.
    Fay KA; Villeneuve DL; Swintek J; Edwards SW; Nelms MD; Blackwell BR; Ankley GT
    Toxicol Sci; 2018 Jun; 163(2):500-515. PubMed ID: 29529260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring.
    Rager JE; Strynar MJ; Liang S; McMahen RL; Richard AM; Grulke CM; Wambaugh JF; Isaacs KK; Judson R; Williams AJ; Sobus JR
    Environ Int; 2016 Mar; 88():269-280. PubMed ID: 26812473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing.
    Wetmore BA; Wambaugh JF; Allen B; Ferguson SS; Sochaski MA; Setzer RW; Houck KA; Strope CL; Cantwell K; Judson RS; LeCluyse E; Clewell HJ; Thomas RS; Andersen ME
    Toxicol Sci; 2015 Nov; 148(1):121-36. PubMed ID: 26251325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.