These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 2867210)
1. Antinociceptive profiles of mu and kappa opioid agonists in a rat tooth pulp stimulation procedure. Steinfels GF; Cook L J Pharmacol Exp Ther; 1986 Jan; 236(1):111-7. PubMed ID: 2867210 [TBL] [Abstract][Full Text] [Related]
2. Discriminative stimulus properties of U50,488 and morphine: effects of training dose on stimulus substitution patterns produced by mu and kappa opioid agonists. Picker MJ; Doty P; Negus SS; Mattox SR; Dykstra LA J Pharmacol Exp Ther; 1990 Jul; 254(1):13-22. PubMed ID: 2164087 [TBL] [Abstract][Full Text] [Related]
3. Increased analgesic potency of mu agonists after continuous naloxone infusion in rats. Paronis CA; Holtzman SG J Pharmacol Exp Ther; 1991 Nov; 259(2):582-9. PubMed ID: 1658305 [TBL] [Abstract][Full Text] [Related]
4. Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice. Ward SJ; Takemori AE J Pharmacol Exp Ther; 1983 Mar; 224(3):525-30. PubMed ID: 6131119 [TBL] [Abstract][Full Text] [Related]
5. [Neurochemical analysis and pharmacological regulation of the corticofugal control of the nociceptive signals in the afferent pathways]. Churiukanov VV Eksp Klin Farmakol; 2003; 66(2):24-31. PubMed ID: 12962044 [TBL] [Abstract][Full Text] [Related]
6. Discriminative stimulus effects of butorphanol: influence of training dose on the substitution patterns produced by Mu, Kappa and Delta opioid agonists. Picker MJ; Benyas S; Horwitz JA; Thompson K; Mathewson C; Smith MA J Pharmacol Exp Ther; 1996 Dec; 279(3):1130-41. PubMed ID: 8968334 [TBL] [Abstract][Full Text] [Related]
7. Opioid antinociception in ovariectomized monkeys: comparison with antinociception in males and effects of estradiol replacement. Negus SS; Mello NK J Pharmacol Exp Ther; 1999 Sep; 290(3):1132-40. PubMed ID: 10454487 [TBL] [Abstract][Full Text] [Related]
8. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. Wells JL; Bartlett JL; Ananthan S; Bilsky EJ J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048 [TBL] [Abstract][Full Text] [Related]
9. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. Schmauss C; Yaksh TL J Pharmacol Exp Ther; 1984 Jan; 228(1):1-12. PubMed ID: 6319664 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of mu- and kappa-receptors by means of correlation of analgesic potency in vivo and receptor binding affinity in vitro of various opioid agonists. Ensinger HA; Stockhaus K; Merz H Methods Find Exp Clin Pharmacol; 1984 Oct; 6(10):649-53. PubMed ID: 6096651 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the in vitro efficacy of mu, delta, kappa and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes. Lester PA; Traynor JR Brain Res; 2006 Feb; 1073-1074():290-6. PubMed ID: 16443205 [TBL] [Abstract][Full Text] [Related]
12. Place-conditioning properties of mu, kappa, and sigma opioid agonists. Iwamoto ET Alcohol Drug Res; 1985-1986; 6(5):327-39. PubMed ID: 3011025 [TBL] [Abstract][Full Text] [Related]
13. Identification of opioid ligands possessing mixed micro agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone [correction of hydropmorphone]. Ananthan S; Khare NK; Saini SK; Seitz LE; Bartlett JL; Davis P; Dersch CM; Porreca F; Rothman RB; Bilsky EJ J Med Chem; 2004 Mar; 47(6):1400-12. PubMed ID: 14998329 [TBL] [Abstract][Full Text] [Related]
15. Activation of kappa opioid receptors by U50488H and morphine enhances the release of substance P from rat trigeminal nucleus slices. Suarez-Roca H; Maixner W J Pharmacol Exp Ther; 1993 Feb; 264(2):648-53. PubMed ID: 7679733 [TBL] [Abstract][Full Text] [Related]
16. Action at the mu receptor is sufficient to explain the supraspinal analgesic effect of opiates. Fang FG; Fields HL; Lee NM J Pharmacol Exp Ther; 1986 Sep; 238(3):1039-44. PubMed ID: 3018217 [TBL] [Abstract][Full Text] [Related]
17. Spinal opioid receptors and adenosine release: neurochemical and behavioral characterization of opioid subtypes. Cahill CM; White TD; Sawynok J J Pharmacol Exp Ther; 1995 Oct; 275(1):84-93. PubMed ID: 7562600 [TBL] [Abstract][Full Text] [Related]
19. Body temperature and analgesic effects of selective mu and kappa opioid receptor agonists microdialyzed into rat brain. Xin L; Geller EB; Adler MW J Pharmacol Exp Ther; 1997 Apr; 281(1):499-507. PubMed ID: 9103537 [TBL] [Abstract][Full Text] [Related]
20. Kappa-opioid receptor-mediated antinociception in the rat. I. Comparative actions of mu- and kappa-opioids against noxious thermal, pressure and electrical stimuli. Millan MJ J Pharmacol Exp Ther; 1989 Oct; 251(1):334-41. PubMed ID: 2571722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]