BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28672108)

  • 1. Robust Strategy for Crafting Li
    Mei J; Yi TF; Li XY; Zhu YR; Xie Y; Zhang CF
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23662-23671. PubMed ID: 28672108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance Li-ion battery driven by a hybrid Li storage mechanism in a three-dimensional architectured ZnTiO
    Li XZ; Ji YR; Chai WY; Huo Z; Yi TF; Xie Y
    Dalton Trans; 2021 Dec; 51(1):168-178. PubMed ID: 34874042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FeSb₂-Al₂O₃-C nanocomposite anodes for lithium-ion batteries.
    Allcorn E; Manthiram A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10886-91. PubMed ID: 24661574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of hollow alpha-Fe2O3 spheres with carbon coating for Li-ion battery.
    Du Z; Zhang S; Zhao J; Wu X; Lin R
    J Nanosci Nanotechnol; 2013 May; 13(5):3602-5. PubMed ID: 23858911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Transmission Electron Microscopy Observation of the Lithiation-Delithiation Conversion Behavior of CuO/Graphene Anode.
    Su Q; Yao L; Zhang J; Du G; Xu B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23062-8. PubMed ID: 26437926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries.
    Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ
    Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the Electrochemical Performance of Li
    Gao Y; Patel RL; Shen KY; Wang X; Axelbaum RL; Liang X
    ACS Omega; 2018 Jan; 3(1):906-916. PubMed ID: 31457937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of Bi
    Zhai X; Gao J; Xue R; Xu X; Wang L; Tian Q; Liu Y
    J Colloid Interface Sci; 2018 May; 518():242-251. PubMed ID: 29471201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous α-MoO3/MWCNT nanocomposite synthesized via a surfactant-assisted solvothermal route as a lithium-ion-battery high-capacity anode material with excellent rate capability and cyclability.
    Ma F; Yuan A; Xu J; Hu P
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15531-41. PubMed ID: 26132052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.
    Zhang J; Zhang C; Wu S; Liu Z; Zheng J; Zuo Y; Xue C; Li C; Cheng B
    Nanoscale Res Lett; 2016 Dec; 11(1):214. PubMed ID: 27102903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metastable Marcasite-FeS
    Fan HH; Li HH; Huang KC; Fan CY; Zhang XY; Wu XL; Zhang JP
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10708-10716. PubMed ID: 28263060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.
    Jia H; Stock C; Kloepsch R; He X; Badillo JP; Fromm O; Vortmann B; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1508-15. PubMed ID: 25574763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electrochemical Performances of Bi
    Deng Z; Liu T; Chen T; Jiang J; Yang W; Guo J; Zhao J; Wang H; Gao L
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12469-12477. PubMed ID: 28338325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalation anode material for lithium ion battery based on molybdenum dioxide.
    Sen UK; Shaligram A; Mitra S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14311-9. PubMed ID: 25062365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Lithium Storage Performances of the Li
    Wang R; Cao X; Zhao D; Zhu L; Xie L; Li J; Miao Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39170-39180. PubMed ID: 32805946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reassembled graphene-platelets encapsulated silicon nanoparticles for Li-ion battery anodes.
    Yoon T; Cho M; Suh YW; Oh ES; Lee JK
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10193-200. PubMed ID: 22413364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.
    Li ZF; Liu Q; Liu Y; Yang F; Xin L; Zhou Y; Zhang H; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27087-95. PubMed ID: 26422399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG-PVP-Assisted Hydrothermal Synthesis and Electrochemical Performance of N-Doped MoS
    Liu W; Yang S; Fan D; Wu Y; Zhang J; Lu Y; Fu L
    ACS Omega; 2024 Feb; 9(8):9792-9802. PubMed ID: 38434849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.