These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
882 related articles for article (PubMed ID: 28672234)
1. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Qaswar M; Hussain S; Rengel Z Sci Total Environ; 2017 Dec; 605-606():454-460. PubMed ID: 28672234 [TBL] [Abstract][Full Text] [Related]
2. Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. Hussain S; Khan AM; Rengel Z Sci Total Environ; 2019 Mar; 654():402-408. PubMed ID: 30447578 [TBL] [Abstract][Full Text] [Related]
3. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. Liu N; Huang X; Sun L; Li S; Chen Y; Cao X; Wang W; Dai J; Rinnan R Chemosphere; 2020 Feb; 241():125065. PubMed ID: 31622886 [TBL] [Abstract][Full Text] [Related]
4. [Blocking Effects of Foliar Conditioners on Cadmium, Arsenic, and Lead Accumulation in Wheat Grain in Compound-contaminated Farmland]. Xiao B; Wang QS; Gao PP; Zhao QL; Yang W; Wang Z; Liu WJ; Xue PY Huan Jing Ke Xue; 2024 Mar; 45(3):1812-1820. PubMed ID: 38471892 [TBL] [Abstract][Full Text] [Related]
5. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. He H; Tam NF; Yao A; Qiu R; Li WC; Ye Z Environ Sci Pollut Res Int; 2016 Dec; 23(23):23551-23560. PubMed ID: 27614643 [TBL] [Abstract][Full Text] [Related]
6. Health risk assessment of heavy metals (Zn, Cu, Cd, Pb, As and Cr) in wheat grain receiving repeated Zn fertilizers. Liu YM; Liu DY; Zhang W; Chen XX; Zhao QY; Chen XP; Zou CQ Environ Pollut; 2020 Feb; 257():113581. PubMed ID: 31753641 [TBL] [Abstract][Full Text] [Related]
7. [Accumulation and Transport Characteristics of Cd, Pb, Zn, and As in Different Maize Varieties]. Ren C; Xiao JH; Li JT; Du QQ; Zhu LW; Wang H; Zhu RZ; Zhao HY Huan Jing Ke Xue; 2022 Aug; 43(8):4232-4252. PubMed ID: 35971720 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study. Lv G; Wang H; Xu C; Shuai H; Luo Z; Zhang Q; Zhu H; Wang S; Zhu Q; Zhang Y; Huang D Environ Sci Pollut Res Int; 2019 Mar; 26(9):9305-9313. PubMed ID: 30719674 [TBL] [Abstract][Full Text] [Related]
9. Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead smelter near Jiyuan, China. Xing W; Cao E; Scheckel KG; Bai X; Li L Environ Sci Pollut Res Int; 2018 Nov; 25(31):31396-31406. PubMed ID: 30196463 [TBL] [Abstract][Full Text] [Related]
10. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat. Grüter R; Costerousse B; Mayer J; Mäder P; Thonar C; Frossard E; Schulin R; Tandy S Sci Total Environ; 2019 Jun; 669():608-620. PubMed ID: 30893620 [TBL] [Abstract][Full Text] [Related]
11. Zinc-cadmium interactions: Impact on wheat physiology and mineral acquisition. Sarwar N; Ishaq W; Farid G; Shaheen MR; Imran M; Geng M; Hussain S Ecotoxicol Environ Saf; 2015 Dec; 122():528-36. PubMed ID: 26426697 [TBL] [Abstract][Full Text] [Related]
12. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain. Meena R; Datta SP; Golui D; Dwivedi BS; Meena MC Environ Sci Pollut Res Int; 2016 Jul; 23(14):14269-83. PubMed ID: 27053056 [TBL] [Abstract][Full Text] [Related]
13. Cadmium foliar application affects wheat Cd, Cu, Pb and Zn accumulation. Li L; Zhang Y; Ippolito JA; Xing W; Qiu K; Wang Y Environ Pollut; 2020 Jul; 262():114329. PubMed ID: 32179229 [TBL] [Abstract][Full Text] [Related]
14. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Abbas T; Rizwan M; Ali S; Zia-Ur-Rehman M; Farooq Qayyum M; Abbas F; Hannan F; Rinklebe J; Sik Ok Y Ecotoxicol Environ Saf; 2017 Jun; 140():37-47. PubMed ID: 28231504 [TBL] [Abstract][Full Text] [Related]
15. Agronomic and ionomics indicators of high-yield, mineral-dense, and low-Cd grains of wheat (Triticum aestivum L.) cultivars. Yi Q; Wang Y; Yi C; Li L; Chen Y; Zhou H; Tong F; Liu L; Gao Y; Shi G Ecotoxicol Environ Saf; 2023 Aug; 261():115120. PubMed ID: 37302237 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment. Wang Y; Li F; Song J; Xiao R; Luo L; Yang Z; Chai L Environ Geochem Health; 2018 Oct; 40(5):2143-2153. PubMed ID: 29651760 [TBL] [Abstract][Full Text] [Related]
17. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Wu C; Dun Y; Zhang Z; Li M; Wu G Ecotoxicol Environ Saf; 2020 Mar; 190():110091. PubMed ID: 31881404 [TBL] [Abstract][Full Text] [Related]
18. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Saifullah ; Javed H; Naeem A; Rengel Z; Dahlawi S Environ Sci Pollut Res Int; 2016 Aug; 23(16):16432-9. PubMed ID: 27164881 [TBL] [Abstract][Full Text] [Related]
19. The influences of selected soil properties on Pb availability and its transfer to wheat (Triticum aestivum L.) in a polluted calcareous soil. Safari Y; Delavar MA; Zhang C; Esfandiarpour-Boroujeni I; Owliaie HR Environ Monit Assess; 2015 Dec; 187(12):773. PubMed ID: 26612564 [TBL] [Abstract][Full Text] [Related]
20. Specific bacterial communities in the rhizosphere of low-cadmium and high‑zinc wheat (Triticum aestivum L.). Liu N; Liu Q; Min J; Zhang S; Li S; Chen Y; Dai J Sci Total Environ; 2022 Sep; 838(Pt 3):156484. PubMed ID: 35667435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]