These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28672236)

  • 21. Development and evaluation of a database of dietary bioaccumulation test data for organic chemicals in fish.
    Arnot JA; Quinn CL
    Environ Sci Technol; 2015 Apr; 49(8):4783-96. PubMed ID: 25821900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current-Use Flame Retardants in the Water of Lake Michigan Tributaries.
    Guo J; Romanak K; Westenbroek S; Hites RA; Venier M
    Environ Sci Technol; 2017 Sep; 51(17):9960-9969. PubMed ID: 28817260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight.
    Hendriks AJ; van der Linde A; Cornelissen G; Sijm DT
    Environ Toxicol Chem; 2001 Jul; 20(7):1399-420. PubMed ID: 11434281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants.
    Stieger G; Scheringer M; Ng CA; Hungerbühler K
    Chemosphere; 2014 Dec; 116():118-23. PubMed ID: 24656972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reproductive health of bass in the Potomac, U.S.A., drainage: part 2. Seasonal occurrence of persistent and emerging organic contaminants.
    Alvarez DA; Cranor WL; Perkins SD; Schroeder VL; Iwanowicz LR; Clark RC; Guy CP; Pinkney AE; Blazer VS; Mullican JE
    Environ Toxicol Chem; 2009 May; 28(5):1084-95. PubMed ID: 19108592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.
    Sun R; Luo X; Tang B; Chen L; Liu Y; Mai B
    Environ Pollut; 2017 Mar; 222():165-174. PubMed ID: 28040337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
    Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD
    Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavior, mass inventories and modeling evaluation of xenobiotic endocrine-disrupting chemicals along an urban receiving wastewater river in Henan Province, China.
    Zhang YZ; Song XF; Kondoh A; Xia J; Tang CY
    Water Res; 2011 Jan; 45(1):292-302. PubMed ID: 20797757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From sediment to tissue and tissue to sediment: an evaluation of statistical bioaccumulation models.
    Judd N; Tear L; Toll J
    Integr Environ Assess Manag; 2014 Jan; 10(1):102-13. PubMed ID: 24105951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption and bioaccumulation behavior of multi-class hydrophobic organic contaminants in a tropical marine food web.
    Zhang H; Kelly BC
    Chemosphere; 2018 May; 199():44-53. PubMed ID: 29428515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of KNN and ANN Metamodeling for RTM Filling Process Prediction.
    Chai BX; Eisenbart B; Nikzad M; Fox B; Blythe A; Bwar KH; Wang J; Du Y; Shevtsov S
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk.
    Peng Y; Fang W; Krauss M; Brack W; Wang Z; Li F; Zhang X
    Environ Pollut; 2018 Oct; 241():484-493. PubMed ID: 29879689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of fish and sediment mercury in streams using landscape variables and historical mining.
    Alpers CN; Yee JL; Ackerman JT; Orlando JL; Slotton DG; Marvin-DiPasquale MC
    Sci Total Environ; 2016 Nov; 571():364-79. PubMed ID: 27378154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An exponential model based new approach for correcting aqueous concentrations of hydrophobic organic chemicals measured by polyethylene passive samplers.
    Lao W; Maruya KA; Tsukada D
    Sci Total Environ; 2019 Jan; 646():11-18. PubMed ID: 30041043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metamodeling for Policy Simulations with Multivariate Outcomes.
    Zhong H; Brandeau ML; Yazdi GE; Wang J; Nolen S; Hagan L; Thompson WW; Assoumou SA; Linas BP; Salomon JA
    Med Decis Making; 2022 Oct; 42(7):872-884. PubMed ID: 35735216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field data reveal low critical chemical concentrations for river benthic invertebrates.
    Berger E; Haase P; Oetken M; Sundermann A
    Sci Total Environ; 2016 Feb; 544():864-73. PubMed ID: 26706759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.