These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 28672697)
21. Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating. Amaral HI; Aeppli C; Kipfer R; Berg M Chemosphere; 2011 Oct; 85(5):774-81. PubMed ID: 21741066 [TBL] [Abstract][Full Text] [Related]
22. The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: A case study. Lhotský O; Kukačka J; Slunský J; Marková K; Němeček J; Knytl V; Cajthaml T J Hazard Mater; 2021 Sep; 417():125883. PubMed ID: 33971551 [TBL] [Abstract][Full Text] [Related]
23. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes. Matturro B; Presta E; Rossetti S Sci Total Environ; 2016 Mar; 545-546():445-52. PubMed ID: 26748009 [TBL] [Abstract][Full Text] [Related]
25. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464 [TBL] [Abstract][Full Text] [Related]
26. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Chambon JC; Bjerg PL; Scheutz C; Baelum J; Jakobsen R; Binning PJ Biotechnol Bioeng; 2013 Jan; 110(1):1-23. PubMed ID: 22926627 [TBL] [Abstract][Full Text] [Related]
27. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples. Leitner S; Reichenauer TG; Watzinger A Sci Total Environ; 2018 Feb; 615():1061-1069. PubMed ID: 29751409 [TBL] [Abstract][Full Text] [Related]
28. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. Yang Y; Cápiro NL; Marcet TF; Yan J; Pennell KD; Löffler FE Environ Sci Technol; 2017 Aug; 51(15):8579-8588. PubMed ID: 28665587 [TBL] [Abstract][Full Text] [Related]
29. Electrochemical transformation of an aged tetrachloroethylene contamination in realistic aquifer settings. Hyldegaard BH; Jakobsen R; Ottosen LM Chemosphere; 2020 Mar; 243():125340. PubMed ID: 31760284 [TBL] [Abstract][Full Text] [Related]
30. Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts. Puigserver D; Cortés A; Viladevall M; Nogueras X; Parker BL; Carmona JM J Contam Hydrol; 2014 Nov; 168():25-40. PubMed ID: 25278314 [TBL] [Abstract][Full Text] [Related]
31. Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. Vogel M; Nijenhuis I; Lloyd J; Boothman C; Pöritz M; Mackenzie K Sci Total Environ; 2018 Jul; 628-629():1027-1036. PubMed ID: 30045527 [TBL] [Abstract][Full Text] [Related]
32. Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. Schneidewind U; Haest PJ; Atashgahi S; Maphosa F; Hamonts K; Maesen M; Calderer M; Seuntjens P; Smidt H; Springael D; Dejonghe W J Contam Hydrol; 2014 Feb; 157():25-36. PubMed ID: 24275111 [TBL] [Abstract][Full Text] [Related]
33. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Atashgahi S; Lu Y; Zheng Y; Saccenti E; Suarez-Diez M; Ramiro-Garcia J; Eisenmann H; Elsner M; J M Stams A; Springael D; Dejonghe W; Smidt H Environ Microbiol; 2017 Mar; 19(3):968-981. PubMed ID: 27631786 [TBL] [Abstract][Full Text] [Related]
34. A switch of chlorinated substrate causes emergence of a previously undetected native Dehalobacter population in an established Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture. Puentes Jácome LA; Edwards EA FEMS Microbiol Ecol; 2017 Dec; 93(12):. PubMed ID: 29088371 [TBL] [Abstract][Full Text] [Related]
35. Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field. Lu X; Wilson JT; Kampbell DH Environ Pollut; 2009 Mar; 157(3):809-15. PubMed ID: 19121882 [TBL] [Abstract][Full Text] [Related]
36. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Wiegert C; Aeppli C; Knowles T; Holmstrand H; Evershed R; Pancost RD; Macháčková J; Gustafsson Ö Environ Sci Technol; 2012 Oct; 46(20):10918-25. PubMed ID: 22989309 [TBL] [Abstract][Full Text] [Related]
37. Nitrous Oxide Is a Potent Inhibitor of Bacterial Reductive Dechlorination. Yin Y; Yan J; Chen G; Murdoch FK; Pfisterer N; Löffler FE Environ Sci Technol; 2019 Jan; 53(2):692-701. PubMed ID: 30558413 [TBL] [Abstract][Full Text] [Related]
38. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: characterization of microbial community structure. Davis JW; Odom JM; Deweerd KA; Stahl DA; Fishbain SS; West RJ; Klecka GM; DeCarolis JG J Contam Hydrol; 2002 Jul; 57(1-2):41-59. PubMed ID: 12143992 [TBL] [Abstract][Full Text] [Related]
39. Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting. Filippini M; Amorosi A; Campo B; Herrero-Martìn S; Nijenhuis I; Parker BL; Gargini A J Contam Hydrol; 2016 Sep; 192():129-139. PubMed ID: 27451056 [TBL] [Abstract][Full Text] [Related]
40. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater. Patil SS; Adetutu EM; Aburto-Medina A; Menz IR; Ball AS Biotechnol Lett; 2014 Jan; 36(1):75-83. PubMed ID: 24101252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]