BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28672825)

  • 41. Maitotoxin, a potent, general activator of phosphoinositide breakdown.
    Gusovsky F; Yasumoto T; Daly JW
    FEBS Lett; 1989 Jan; 243(2):307-12. PubMed ID: 2537233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel electropharmacological activity of amiodarone on human HCN channels heterologously expressed in the Xenopus oocytes.
    Fan X; Chen Y; Wu P; Xing J; Chen H; Song T; Yang J; Zhang J; Huang C
    Eur J Pharmacol; 2011 Nov; 669(1-3):15-23. PubMed ID: 21839071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides.
    Silver K; Soderlund DM
    Neurotoxicology; 2005 Jun; 26(3):397-406. PubMed ID: 15935211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. KCNA10: a novel ion channel functionally related to both voltage-gated potassium and CNG cation channels.
    Lang R; Lee G; Liu W; Tian S; Rafi H; Orias M; Segal AS; Desir GV
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F1013-21. PubMed ID: 10836990
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electropharmacological properties of telmisartan in blocking hKv1.5 and HERG potassium channels expressed on Xenopus laevis oocytes.
    Tu DN; Liao YH; Zou AR; Du YM; Run Q; Wang XP; Li L
    Acta Pharmacol Sin; 2008 Aug; 29(8):913-22. PubMed ID: 18664324
    [TBL] [Abstract][Full Text] [Related]  

  • 47. R-type voltage-gated Ca(2+) channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes.
    Cohen R; Atlas D
    Neuroscience; 2004; 128(4):831-41. PubMed ID: 15464290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels.
    Ljungstrom T; Grunnet M; Jensen BS; Olesen SP
    Pflugers Arch; 2003 Sep; 446(6):684-94. PubMed ID: 12827359
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TRPC1 forms the stretch-activated cation channel in vertebrate cells.
    Maroto R; Raso A; Wood TG; Kurosky A; Martinac B; Hamill OP
    Nat Cell Biol; 2005 Feb; 7(2):179-85. PubMed ID: 15665854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pore residues of transient receptor potential channels canonical 1 and 4 heteromer determine channel properties.
    Park CH; Kim J; Lee JE; Kwak M; So I
    Am J Physiol Cell Physiol; 2023 Jul; 325(1):C42-C51. PubMed ID: 37212545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trpc1 as the Missing Link Between the Bmp and Ca
    Néant I; Leung HC; Webb SE; Miller AL; Moreau M; Leclerc C
    Sci Rep; 2019 Nov; 9(1):16049. PubMed ID: 31690785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Voltage Clamp Fluorometry: Illuminating the Dynamics of Ion Channels.
    Sastre D; Fedida D
    Methods Mol Biol; 2024; 2796():119-138. PubMed ID: 38856899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Maitotoxin-induced cell death cascade in bovine aortic endothelial cells: divalent cation specificity and selectivity.
    Wisnoskey BJ; Estacion M; Schilling WP
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C345-56. PubMed ID: 15044153
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Yeast luminometric and Xenopus oocyte electrophysiological examinations of the molecular mechanosensitivity of TRPV4.
    Teng J; Loukin S; Zhou X; Kung C
    J Vis Exp; 2013 Dec; (82):. PubMed ID: 24637628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of TRPC Channels in a Heterologous System Using Calcium Imaging and the Patch-Clamp Technique.
    de la Peña E; Gomis A
    Methods Mol Biol; 2019; 1987():83-97. PubMed ID: 31028675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterizing Channelrhodopsin Channel Properties Via Two-Electrode Voltage Clamp and Kinetic Modeling.
    Prignano L; Herchenroder L; Dempski RE
    Methods Mol Biol; 2021; 2191():49-63. PubMed ID: 32865738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes.
    Rivera-Acevedo RE; Pless SA; Schwarz SK; Ahern CA
    Channels (Austin); 2013 Jan; 7(1):47-50. PubMed ID: 23428812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels.
    Rubaiy HN
    Br J Pharmacol; 2019 Apr; 176(7):832-846. PubMed ID: 30656647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Possible coupling of prostaglandin E receptor EP(1) to TRP5 expressed in Xenopus laevis oocytes.
    Tabata H; Tanaka S; Sugimoto Y; Kanki H; Kaneko S; Ichikawa A
    Biochem Biophys Res Commun; 2002 Nov; 298(3):398-402. PubMed ID: 12413954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents.
    Vinayagam D; Quentin D; Yu-Strzelczyk J; Sitsel O; Merino F; Stabrin M; Hofnagel O; Yu M; Ledeboer MW; Nagel G; Malojcic G; Raunser S
    Elife; 2020 Nov; 9():. PubMed ID: 33236980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.