These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28672827)

  • 1. Digital Microfluidics for Nucleic Acid Amplification.
    Coelho B; Veigas B; Fortunato E; Martins R; Águas H; Igreja R; Baptista PV
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital microfluidics with distance-based detection - a new approach for nucleic acid diagnostics.
    Ho M; Sathishkumar N; Sklavounos AA; Sun J; Yang I; Nichols KP; Wheeler AR
    Lab Chip; 2023 Dec; 24(1):63-73. PubMed ID: 37987330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microfluidic systems with sample preparation and nucleic acid amplification.
    Yin J; Suo Y; Zou Z; Sun J; Zhang S; Wang B; Xu Y; Darland D; Zhao JX; Mu Y
    Lab Chip; 2019 Sep; 19(17):2769-2785. PubMed ID: 31365009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Detection of Uropathogens Using an Integrated Multiplex Digital Nucleic Acid Detection Assay Powered by a Digital-to-Droplet Microfluidic Device.
    Xie Y; Chen Z; Cai D; Huang D; Huang E; Yang X; Zhang T; Wen H; Wang Y; Zhao M; Liu D; Xu B
    Anal Chem; 2024 Jul; ():. PubMed ID: 39018349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital Sort-Enabled Counting Allows Absolute Electrical Quantification of Target Nucleic Acid.
    Liu Y; Cui X; Lu R; Yang D; Ai Y; Cheow LF
    ACS Sens; 2024 May; 9(5):2695-2702. PubMed ID: 38747895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis.
    Luo G; Zhang Y; Wang S; Lv X; Yang T; Wang J
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Smartphone-Enabled Continuous Flow Digital Droplet LAMP Platform for High Throughput and Inexpensive Quantitative Detection of Nucleic Acid Targets.
    Ditchendorf E; Ahmed I; Sepate J; Priye A
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of confinement effect in single molecule amplification via real-time digital PCR on a multivolume droplet array SlipChip.
    Luo Y; Hu Q; Yu Y; Lyu W; Shen F
    Anal Chim Acta; 2024 May; 1304():342541. PubMed ID: 38637051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized devices for point of care molecular detection of HIV.
    Mauk M; Song J; Bau HH; Gross R; Bushman FD; Collman RG; Liu C
    Lab Chip; 2017 Jan; 17(3):382-394. PubMed ID: 28092381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex digital microfluidics using serial controls and its applications in glucose sensing.
    Liu X; Cai J; Wang W; Chai Y
    SLAS Technol; 2024 Apr; 29(2):100105. PubMed ID: 37652174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Thermocycling in Custom Microfluidic Cartridge for Rapid Single-Molecule Droplet PCR.
    Takahara H; Tanaka H; Hashimoto M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids.
    Vloemans D; Van Hileghem L; Ordutowski H; Dal Dosso F; Spasic D; Lammertyn J
    Methods Mol Biol; 2024; 2804():3-50. PubMed ID: 38753138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced design and applications of digital microfluidics in biomedical fields: An update of recent progress.
    Yang C; Gan X; Zeng Y; Xu Z; Xu L; Hu C; Ma H; Chai B; Hu S; Chai Y
    Biosens Bioelectron; 2023 Dec; 242():115723. PubMed ID: 37832347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-5-Minute Ultrafast PCR using Digital Microfluidics.
    Wan L; Li M; Law MK; Mak PI; Martins RP; Jia Y
    Biosens Bioelectron; 2023 Dec; 242():115711. PubMed ID: 37797533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration.
    Ouyang W; Han J
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16240-16249. PubMed ID: 31358642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Ultrasensitive Molecular Amplifier for Digital and Multiplex MicroRNA Quantification.
    Rondelez Y; Gines G
    Methods Mol Biol; 2023; 2630():89-102. PubMed ID: 36689178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated nucleic acid purification technology based on amino-modified centrifugal microfluidic chip.
    Dong Y; Chen B; Cai G; Xu F; Li L; Cheng X; Shi X; Peng B; Mi S
    Biotechnol J; 2024 Jan; 19(2):e2300113. PubMed ID: 38050772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic-acid testing, new platforms and nanotechnology for point-of-decision diagnosis of animal pathogens.
    Teles F; Fonseca L
    Methods Mol Biol; 2015; 1247():253-83. PubMed ID: 25399103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DECODE: Contamination-Free Digital CRISPR Platform for Point-of-Care Detection of Viral DNA/RNA.
    Li S; Yin H; Zheng J; Wan Y; Wang K; Yang C; Zhou J; Zhao M; Yuan X; Wang J
    ACS Sens; 2024 Jul; ():. PubMed ID: 39031497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid microfluidics prototyping through variotherm desktop injection molding for multiplex diagnostics.
    Suarez GD; Bayer S; Tang YYK; Suarez DA; Cheung PP; Nagl S
    Lab Chip; 2023 Aug; 23(17):3850-3861. PubMed ID: 37534874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.