BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28672882)

  • 1. A Novel Benzoquinone Compound Isolated from Deep-Sea Hydrothermal Vent Triggers Apoptosis of Tumor Cells.
    Xu C; Sun X; Jin M; Zhang X
    Mar Drugs; 2017 Jun; 15(7):. PubMed ID: 28672882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of tryptophol on the bacteriophage infection in high-temperature environment.
    Jin M; Xu C; Zhang X
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8101-11. PubMed ID: 25994257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homeostasis-maintaining metabolites from bacterial stress response to bacteriophage infection suppress tumor metastasis.
    He T; Jin M; Xu C; Ma Z; Wu F; Zhang X
    Oncogene; 2018 Oct; 37(43):5766-5779. PubMed ID: 29925861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures.
    Jin M; Ye T; Zhang X
    Microbiology (Reading); 2013 Aug; 159(Pt 8):1597-1605. PubMed ID: 23782802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature.
    Wei D; Zhang X
    J Virol; 2010 Mar; 84(5):2365-73. PubMed ID: 20015994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of interactions between bacterial chaperone, aspartate aminotransferase, and viral protein during virus infection in high temperature environment: the interactions between bacterium and virus proteins.
    Chen Y; Wei D; Wang Y; Zhang X
    BMC Microbiol; 2013 Feb; 13():48. PubMed ID: 23442450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inhibition of host MreB on the infection of thermophilic phage GVE2 in high temperature environment.
    Jin M; Chen Y; Xu C; Zhang X
    Sci Rep; 2014 Apr; 4():4823. PubMed ID: 24769758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.
    Jiang L; Xu H; Zeng X; Wu X; Long M; Shao Z
    Res Microbiol; 2015 Nov; 166(9):677-87. PubMed ID: 26026841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature.
    Song Q; Ye T; Zhang X
    Gene; 2011 Jun; 479(1-2):1-9. PubMed ID: 21303688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique phage-bacterium interplay in sponge holobionts from the southern Okinawa Trough hydrothermal vent.
    Zhou K; Qian PY; Zhang T; Xu Y; Zhang R
    Environ Microbiol Rep; 2021 Oct; 13(5):675-683. PubMed ID: 34128329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.
    He T; Zhang X
    Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dereplication and targeted isolation of bioactive sulphur compound from bacteria isolated from a hydrothermal field.
    Lin X; Li K; Yang L; Peng X; Fang W; Tian X; Liu Y; Zhou X
    Nat Prod Res; 2019 Feb; 33(4):494-499. PubMed ID: 29117742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions.
    Liu B; Zhang X
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):697-707. PubMed ID: 18636255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney.
    Pillot G; Davidson S; Auria R; Combet-Blanc Y; Godfroy A; Liebgott PP
    Microb Ecol; 2020 Jan; 79(1):38-49. PubMed ID: 31079197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?
    Thornburg CC; Zabriskie TM; McPhail KL
    J Nat Prod; 2010 Mar; 73(3):489-99. PubMed ID: 20099811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.
    Lossouarn J; Dupont S; Gorlas A; Mercier C; Bienvenu N; Marguet E; Forterre P; Geslin C
    Res Microbiol; 2015 Dec; 166(10):742-52. PubMed ID: 25911507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome analysis of deep-sea thermophilic phage D6E.
    Wang Y; Zhang X
    Appl Environ Microbiol; 2010 Dec; 76(23):7861-6. PubMed ID: 20889772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2.
    Ye T; Zhang X
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):635-41. PubMed ID: 18224315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.
    Cerqueira T; Pinho D; Egas C; Froufe H; Altermark B; Candeias C; Santos RS; Bettencourt R
    Mar Genomics; 2015 Dec; 24 Pt 3():343-55. PubMed ID: 26375668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site.
    Wissuwa J; Stokke R; Fedøy AE; Lian K; Smalås AO; Steen IH
    Stand Genomic Sci; 2016; 11():16. PubMed ID: 26913091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.