These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28673049)

  • 1. Localized Surface Plasmon Resonance Dependence on Misaligned Truncated Ag Nanoprism Dimer.
    Yang H; Owiti EO; Jiang X; Li S; Liu P; Sun X
    Nanoscale Res Lett; 2017 Dec; 12(1):430. PubMed ID: 28673049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Plasmon Resonance of Large-Size Ag Nanobars.
    Wu F; Cheng L; Wang W
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes.
    Lee I; Park JY; Hong K; Son JH; Kim S; Lee JL
    Nanoscale; 2016 Mar; 8(12):6463-7. PubMed ID: 26934838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear absorption tuning by composition control in bimetallic plasmonic nanoprism arrays.
    Cesca T; Michieli N; Kalinic B; Sánchez-Espinoza A; Rattin M; Russo V; Mattarello V; Scian C; Mazzoldi P; Mattei G
    Nanoscale; 2015 Aug; 7(29):12411-8. PubMed ID: 26129696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles.
    Zhao J; Jensen L; Sung J; Zou S; Schatz GC; Duyne RP
    J Am Chem Soc; 2007 Jun; 129(24):7647-56. PubMed ID: 17521187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viable stretchable plasmonics based on unidirectional nanoprisms.
    Lee JE; Park C; Chung K; Lim JW; Marques Mota F; Jeong U; Kim DH
    Nanoscale; 2018 Feb; 10(8):4105-4112. PubMed ID: 29431795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: Theoretical prediction and experimental validation.
    Song D; Jing D
    J Colloid Interface Sci; 2017 Nov; 505():373-382. PubMed ID: 28601746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the optical properties of bowtie antenna generated by self-assembled ag triangular nanoprisms.
    Rosen DA; Tao AR
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4134-42. PubMed ID: 24533909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas.
    Joshi GK; Blodgett KN; Muhoberac BB; Johnson MA; Smith KA; Sardar R
    Nano Lett; 2014 Feb; 14(2):532-40. PubMed ID: 24393014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Localized Surface Plasmon Resonance of Fully Alloyed AgAuPdPt, AgAuPt, AuPt, AgPt, and Pt Nanocrystals: Systematical Investigation on the Morphological and LSPR Properties of Mono
    Kunwar S; Pandey P; Lee J
    ACS Omega; 2019 Oct; 4(17):17340-17351. PubMed ID: 31656907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling between localized and propagating plasmon polaritons.
    Balci S; Karademir E; Kocabas C
    Opt Lett; 2015 Jul; 40(13):3177-80. PubMed ID: 26125396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films.
    Lee YH; Lee CK; Tan B; Rui Tan JM; Phang IY; Ling XY
    Nanoscale; 2013 Jul; 5(14):6404-12. PubMed ID: 23740152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase colorimetric sensing probe for bromide based on a tough hydrogel embedded with silver nanoprisms.
    Kim SH; Woo HC; Kim MH
    Anal Chim Acta; 2020 Sep; 1131():80-89. PubMed ID: 32928482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Visualization of Localized Surface Plasmon Resonance-Driven Hot Hole Flux.
    Lee H; Song K; Lee M; Park JY
    Adv Sci (Weinh); 2020 Oct; 7(20):2001148. PubMed ID: 33101854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography.
    Wu K; Rindzevicius T; Schmidt MS; Mogensen KB; Xiao S; Boisen A
    Opt Express; 2015 May; 23(10):12965-78. PubMed ID: 26074549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag@Au nanoprism-metal organic framework-based paper for extending the glucose sensing range in human serum and urine.
    Huang PH; Hong CP; Zhu JF; Chen TT; Chan CT; Ko YC; Lin TL; Pan ZB; Sun NK; Wang YC; Luo JJ; Lin TC; Kang CC; Shyue JJ; Ho ML
    Dalton Trans; 2017 May; 46(21):6985-6993. PubMed ID: 28513731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photomodulated Spatially Confined Chemical Reactivity in a Single Silver Nanoprism.
    Bhanushali S; Mahasivam S; Ramanathan R; Singh M; Harrop Mayes EL; Murdoch BJ; Bansal V; Sastry M
    ACS Nano; 2020 Sep; 14(9):11100-11109. PubMed ID: 32790283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Oxide-Supported Ag Nanoplates as LSPR Tunable and Reproducible Substrates for SERS Applications with Optimized Sensitivity.
    Hou H; Wang P; Zhang J; Li C; Jin Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18038-45. PubMed ID: 26203672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.